رپو فایل

مرجع دانلود و خرید فایل

رپو فایل

مرجع دانلود و خرید فایل

تحقیق ارزیابی عملکرد سازمان با استفاده مدل تعالی سازمان EFQM

تحقیق ارزیابی عملکرد سازمان با استفاده مدل تعالی سازمان EFQM

تحقیق-ارزیابی-عملکرد-سازمان-با-استفاده-مدل-تعالی-سازمان-efqmتحقیق ارزیابی عملکرد سازمان با استفاده مدل تعالی سازمان EFQM در قالب فایل word در حجم 72 صفحه. در عصر کنونی تحولات شگرف دانش مدیریت وجود نظام ارزیابی عملکرد را اجتناب ناپذیر نموده است، به‌گونه‌ای که فقدان نظام ارزیابی در ابعاد مختلف ، اعم از ارزیابی در ...


دانلود فایل


بررسی و طراحی مبدلهای زبا استفاده از روش پینچ

مبدل ها تجهیزاتی هستند که جریان گرمایی را بین دو یا چند سیال در دماهای مختلف فراهم می کنند مبدل های گرما در محدوده وسیعی از کاربردها استفاده میشوند این کاربردها شامل تولید برق،صنایع فرایندی شیمیایی،غذایی،الکترونیک،مهندسی،محیط زیست،بازیابی گرمای استفاده نشده،صنایع ساخت و تولید تهویه مطبوع،تبرید و کاربردهای فضایی می باشند
دسته بندی مهندسی شیمی
بازدید ها 0
فرمت فایل docx
حجم فایل 2380 کیلو بایت
تعداد صفحات فایل 44
بررسی وطراحی مبدلهای حرارتی با استفاده از روش پینچ

فروشنده فایل

کد کاربری 3230
کاربر

بررسی وطراحی مبدلهای حرارتی با استفاده از روش پینچ

فهرست

عنوان صفحه

مقدمه

مبدل گرمایی 1

نقش مبدلهای حرارتی 2

خطوط انتقالVSC راهی به آینده 2

از گرمای درون 4

انرژی گرمایی زمین و کاربردهای آن 10

نیروگاههای جدید حرارتی با سیستم انرژی پاک 21

نیروگاه های هسته ای 25

سیستم های ذخیره ساز یخ 27

تقسیم بندی مبدلهای گرمایی 30

مبدلهای حرارتی روش پینچ 38

منابع 44

منابع:

1- پژوهشکده صنعت نفت

2- نشریه مبدلهای گرمایی

3- دسته بندی مبدلهای گرمایی مهندس احمد رضا علمی

4- شرکت ملی نفت خیز جنوب مهندس علی داسمه

5-اداره مهندسی بهره برداری

مبدل حرارتی

مبدل ها تجهیزاتی هستند که جریان گرمایی را بین دو یا چند سیال در دماهای مختلف فراهم می کنند. مبدل های گرما در محدوده وسیعی از کاربردها استفاده میشوند. این کاربردها شامل تولید برق،صنایع فرایندی شیمیایی،غذایی،الکترونیک،مهندسی،محیط زیست،بازیابی گرمای استفاده نشده،صنایع ساخت و تولید تهویه مطبوع،تبرید و کاربردهای فضایی می باشند.

مبدل ها را می توان طبق معیار زیر طبقه بندی کرد:

1) مبدل های گرمایی از نظر انتقال گرما و بازیابی گرما

2) مبدل های گرمایی از نظر فرایند انتقال

3) مبدل های گرمایی از نظر هندسه ساختار

4) مبدل های گرمایی از نظر مکانیزمهای انتقال گرما

5) مبدل های گرمایی از نظر آرایش جریان های گرم و سرد

یکی از مهمترین و بارزترین اختلاف بین مبدل ها، از نظر شکل و ساختار می باشد و مبدل های گرما از نوع تماس غیر مستقیم اغلب طبق مشخصات ساختاریشان توصیف می شوند و انواع عمده دسته بندی مبدل ها از نظر شکل و ساختار شامل لوله ای،صفحه ای و پره دار می باشد

نقش مبدلهای حرارتی

1- خطوط انتقالVSC راهی به آینده

خطوط انتقال *VSC یا خطوط انتقال با مبدلهای منبع ولتاژی امروزه واقعیت و تحقق یافته و همچنان که جنبه های خاصی از آن کاربرد می یابد بیشتر مورد استفاده قرار می گیرند. اولین سیستم انتقالVSC تحت عنوان طراحی خطوط HVDC سبک توسط شرکت ABB ساخته شده است. خود مبدلهای منبع ولتاژی دارای کاربرد در کنترل ادوات FACTS و UPFC بوده است. اما چنانچه مبدلهای منبع ولتاژی بهمراه خطوط DC و یا کابل استفاده گردند تشکیل خطوط VSC را خواهند داد.

در خطوط VSC همراه با کابل، چون در VSC از دیود با هدایت یکسو استفاده میگردد، لذا ولتاژDC در کابل نمی تواند هرگز جهت پلاریته خود را تغییر دهد. این ویژگی با عث میشود که مشکل بارهای الکتریکی با قیمانده در فضای داخل کابلهای از بین رفته و نتیجتا مجاز به کاهش قدرت عایقی آنها شده که این خود اجازه استفاده از فرآیند مفصل بندی در کابلها را میدهد. ویژگیهای فوق سبب کوچک، سبک و ارزان شدن کابل ها می گردند.

در خطوط VSC ولتاژ متوسط، میتوان کابلهای سبک و کوچک را در زیرزمین قرار داد. در گزارش اخیر IEEE کاربرد جالبی از خطوط VSC بین شهرهای New South Wales و Queensland در کشور استرالیا گزارش شده است. چون خطوط بصورت کابل زیرزمینی می باشند دارای مسائل محیطی کمتری در مقایسه با خطوط هوائی خواهند بود.

در گزارش پروژه Directlink تأسیس یک خط VSC بظرفیت 180 مگا ولت آمپر با کابل زیرزمینی در سال 1999 توسط شرکت ABB گزارش شده است. خطوط VSC نیز بطور ذاتی دارای خاصیت و ویژگی های ادوات FACTS بشرح زیر می باشند.

1- توانائی کنترل مستقل ولتاژ AC در هر یک از شینهای دو سر خط

2- با کنترل سریع توان میتواند برای افزایش میرائی نوسانات الکترومکانیکی توان در شبکه های AC استفاده گردد.

3- طرف انتهائی خطوط VSC میتواند صرفا بار الکتریکی بدون شبکه و ژنراتور باشد در اینصورت مبدلهای VSC میتوانند بار را با یک ولتاژ AC تحت یک دامنه و فرکانس تعریف شده تغذیه نمایند.

* Voltage Sourced Convertor

با یک چنین مزایائی چنانچه هزینه و قیمت خطوط VSC قابل قبول باشد میتوانند در شبکه های ولتاژ متوسط بخوبی بکار گرفته شوند. بنابراین خطوط VSC میتوانند بعنوان عامل تقویت و ثبات سنکرونیزاسیون شبکه عمل نمایند. شکل (1) ساختار کلی یک VSC را نشان میدهد.

شکل (1) : ساختار کلی یک خط انتقال VSC

در یک VSC عناصر کلیدزنی یا از نوع GTO و یا TGBT می باشند که بصورت روشن / خاموش کار کرده و میتوانند براساس الگوریتم PWM کنترل شوند. این الگوریتم میتواند در جهت حذف و یا کاهش هارمونیکی عمل نماید.

با اعمال الگوریتم PWM در اینصورت حداقل 4 متغیر از خط VSC می باید کنترل شود. چنانچه در انتهای خط منبع ولتاژ ac وجود نداشته باشد در اینصورت ولتاژ و فرکانس آن قابل کنترل می باشد. اما چنانچه در انتهای خط منبع ولتاژ ac وجود داشته باشد در اینصورت مبدل های VSC ولتاژ ac انتهائی را کنترل می نمایند.

با بکارگیری خطوط VSC ویژگی سنکرونیزاسیون در شبکه های ac منتفی خواهد شد. از دیگر ویژگی های خطوط VSC در مقایسه با خطوط معمولی افزایش ضریب میرائی نوسانات الکترومکانیکی در شبکه ها می باشد. در حقیقت خطوط VSC نوعی از کنترل کننده های FACTS بوده که قادر هستند ولتاژ AC شینهای ابتدا و انتهائی، توان انتقالی از خط، درجه سنکرونیزاسیون و ضریب میرائی نوسانات را کنترل نمایند.

2- از گرمای درون

زمینی که زیر پای ما قرار دارد، منبع بسیار عظیم انرژی است. این انرژی که به صورت حرارت از اعماق زمین به سطح آن هدایت می شود در صورت توسعه فناوری استخراج آن، به تنهایی قادر خواهد بود کلیه نیازهای انرژی امروز و آینده بشر را تامین کند. طبق محاسبه ها، مشخص شده است که انرژی حرارتی ذخیره شده در ۱۱ کیلومتر فوقانی پوسته زمین معادل پنجاه هزار برابر کل انرژی به دست آمده از منابع نفت و گاز شناخته شده امروز جهان است. پس این منبع عظیم انرژی می تواند در آینده جایگزین قابل اطمینانی برای انرژی حاصل از سوخت های فسیلی باشد. البته بدیهی است که بهره برداری گسترده از ذخایر انرژی زمین گرمایی، مستلزم توسعه بیشتر در زمینه تکنیک های اکتشاف و استخراج آن است.

انرژی زمین گرمایی چیست اصطلاح زمین گرمایی ترجمه واژه Geothermal است که ریشه یونانی داشته و از کلمات Geo به معنای زمین و Therme به معنی حرارت تشکیل شده است. در حقیقت انرژی زمین گرمایی، انرژی ای است که از سیال آب داغ یا بخارداغ موجود در اعماق زمین به دست می آید. این انرژی در مخزن زمین گرمایی متمرکز شده است که برای دسترسی به آن در محل مخزن، چاهی عمیق حفر می کنند. سیال خروجی از چاه، عامل انتقال انرژی از مخزن به سطح زمین است. البته عمق مخزن زمین گرمایی نباید بیش از سه هزار متر باشد زیرا بهره برداری از انرژی آن با فناوری کنونی بشر توجیه اقتصادی ندارد. با افزایش عمق زمین درجه حرارت افزایش می یابد. این افزایش حرارت را شیب حرارتی می نامند. تمام منابع انرژی زمین گرمایی در نقاطی واقع شده اند که از شیب حرارتی بالایی برخوردارند.

تاریخچه این انرژی از ابتدای خلقت مورد استفاده انسان بوده است. بدین ترتیب که از آن برای شست وشو، پخت وپز، استحمام، کشاورزی و درمان بیماری ها استفاده می شد. اسناد و مدارک موجود ثابت می کند که ساکنان کشورهایی نظیر چین، ژاپن، ایسلند و نیوزیلند در گذشته های دور از این انرژی استفاده می کردند. در سال ۱۸۲۸ فردی به نام لاردرللو در کشور ایتالیا برای تهیه اسید بوریک از حرارت آب های گرم به جای سوزاندن هیزم استفاده کرد. در سال ۱۹۰۸ در منطقه مذکور نخستین نیروگاه زمین گرمایی به ظرفیت ۲۰ کیلووات راه اندازی شد که در سال ۱۹۴۰ ظرفیت آن به ۱۲۷ مگاوات افزایش یافت. تا سال ۱۹۵۰ بهره گیری از انرژی زمین گرمایی رشد چندانی نداشت، اما حد فاصل سال های ۱۹۵۰ تا ۱۹۷۳ به دلیل گران شدن بی سابقه و ناگهانی نفت، همه کشورها به فکر استفاده از انرژی های جایگزین افتادند و به تدریج کشورهایی چون آمریکا، ایسلند، فیلیپین، اندونزی و اغلب کشورهایی که روی کمربند زمین گرمایی جهانی قرار داشتند بهره برداری از این انرژی را شروع کردند.

نشانه های انرژی زمین گرمایی مهمترین نشانه های منابع زمین گرمایی موارد زیر است: سنگ های آتشفشانی جوان جوان تر از یک میلیون سال چشمه های آبگرم بخارفشان یا گازفشان آب فشان نواحی دگرسان شده گل فشان کوه های آتشفشانی فعال البته ذکر این نکته ضروری است که برای آغاز بررسی های اکتشافی در یک منطقه زمین گرمایی، بیش از یک نشانه باید در منطقه وجود داشته باشد.

موارد کاربرد انرژی زمین گرمایی پس از انجام بررسی های اکتشافی و حفر چاه های اکتشافی و تولیدی در میدان زمین گرمایی، مسئله کاربرد انرژی زمین گرمایی مطرح می شود. مهمترین عامل در تعیین نوع کاربرد مخزن زمین گرمایی، درجه حرارت آن است. امروزه منابع زمین گرمایی را بر اساس درجه حرارت به سه دسته کلی حرارت بالا، حرارت متوسط و حرارت پایین تقسیم می کنند. مبنای این تقسیم بندی، درجه حرارت مخزن در عمق یک کیلومتری زمین است. به این ترتیب که اگر درجه حرارت مخزن در عمق مذکور بیش از ۲OOC باشد آن را حرارت بالا می نامند. درجه حرارت مخازن حرارت متوسط و پایین به ترتیب بین ۱۵۰C و ۲۰۰C و کمتر از ۱۵۰C است. امروزه از مخزن های زمین گرمایی به دو صورت عمده کاربرد غیر مستقیم تولید برق و کاربرد مستقیم انرژی حرارتی استفاده می شود.

تولید برق به منظور تولید برق از انرژی زمین گرمایی، سیال مخزن آب داغ یا بخار از طریق چاه های حفر شده به سطح زمین هدایت شده و پس از به چرخش درآوردن توربین در نیروگاه، برق تولید می کند. بدیهی است که از مخازن حرارت بالا بیشتر برای تولید برق استفاده می شود. در حال حاضر ۲۲ کشور جهان به کمک منابع زمین گرمایی خود بیش از MW ۸۲۰۰ برق تولید می کنند. در نیروگاه های زمین گرمایی، انرژی الکتریکی به کمک چرخه های مخصوصی تولید می شود. مهمترین و رایج ترین آنها عبارتند از: ▪چرخه تبخیر آنی در این دسته از چرخه های تولید برق، سیال زمین گرمایی پس از خروج از چاه، وارد یک جداکننده شده و بخار حاصل به سمت توربین و آب داغ به سمت چاه های تزریقی و برج خنک کننده روانه می شود. حال، برحسب اینکه عمل جدایش یا تبخیر آنی در یک مرحله یا دو مرحله انجام شود و برحسب وجود یا عدم وجود کندانسور، سه نوع چرخه تبخیر آنی وجود دارد: چرخه تبخیر آنی یک مرحله ای بدون کندانسور، چرخه تبخیر آنی یک مرحله ای با کندانسور، چرخه تبخیر آنی دومرحله ای.

چرخه دومداره از این چرخه برای تولید برق از مخزن های زمین گرمایی حرارت پایین استفاده می شود. حدود ۵۰ درصد مخازن زمین گرمایی شناخته شده جهان درجه حرارتی بین ۱۵۰C تا ۲۰۰C دارند، که اگر برای تولید برق از آنها از چرخه تبخیر آنی استفاده شود، چرخه مزبور بازده بسیار پایینی خواهد داشت. در این چرخه از سیال عامل برای تولید برق استفاده می شود بدین ترتیب که آب داغ، سیال عامل را در یک مبدل حرارتی، گرم و به بخار تبدیل می کند. بخار حاصل، توربین را به حرکت در آورده، برق تولید می کند. از جمله مزیت های مهم این چرخه، عدم وجود خوردگی یا رسوب گذاری توسط سیال عامل است. در حال حاضر مهمترین کشورهای جهان از نقطه نظر تولید برق از منابع زمین گرمایی، کشورهای آمریکا ۲۲۲۸ مگاوات، فیلیپین ۱۹۰۹ مگاوات، ایتالیا ۷۶۹ مگاوات، مکزیک ۷۵۵ مگاوات و اندونزی ۵۹۰ مگاوات هستند.


بررسی حلالهای مورد استفاده در شیرین سازی گاز ترش

لغت و گاز طبیعی منابع ارزشمند و گرانبهای زیر زمینی هستند که حداقل تا یکصد سال آینده به عنوان عمده ترین منابع انرژی در جهان باقی خواهند ماند در ایران به عنوان کشوری که بیش از 10% کل مخازن نفت جهان و 13% کل مخازن گاز دنیا را داراست
دسته بندی نفت و گاز
بازدید ها 0
فرمت فایل doc
حجم فایل 1076 کیلو بایت
تعداد صفحات فایل 80
بررسی حلالهای مورد استفاده در شیرین سازی گاز ترش

فروشنده فایل

کد کاربری 3230
کاربر

بررسی حلالهای مورد استفاده در شیرین سازی گاز ترش

فهرست مطالب

عنوان صفحه

مقدمه

خلاصه

فصل اول – لزوم شیرین سازی گاز ترش 1

لزوم شیرین سازی گاز ترش 3

سولفید هیدروژن 3

دی اکسید کربن 4

مرکاپتانها ( RSH ) 4

سولفید کربنیل و دی سولفید کربن 4

مشخصات استاندارد گاز طبیعی 5

تولید گوگرد 6

فرآیندهای شیرین سازی گاز ترش 7

فصل دوم – شیرین سازی گاز 11

شیرین سازی گاز بوسیله آمین ها 12

آمین ها 12

آمین های الیفاتیک 14

حلالهای فرموله شده 14

عمل جذب گازهای اسیدی بوسیله آمین ها 14

منو اتانول آمین ( MEA ) 17

دی اتانول آمین ( DEA ) 18

تری اتانول آمین ( TEA ) 19

متیل دی اتانول آمین ( MDEA ) 20

حلالهای فرموله شده 25

مزایای استفاده از آمین ها 25

INET SEPARATOR 26

برج جذب ( Contactor ) 27

مخزن تبخیر ( Flash Tank ) 29

فیلتر 30

STRIPPER 31

محاسبات ساده تصفیه با آمین 33

فصل سوم – شیرین سازی گازها با حلالهای فیزیکی 36

حلال فیزیکی 38

فرآیند فلوئور ( Flour ) 42

فرآیند SELEXOL 44

مقایسه و انتخاب حلالهای فیزیکی 46

جذب انتخابی H2S 48

کاربرد حلالهای فیزیکی 49

فرآیند سولفونیل ( Sulfonil ) 51

فصل چهارم – شیرین سازی بوسیله کربناتها 53

فرآیند کربنات پتاسیم داغ ( H.P.C ) 54

نمودار فرآیند HPC 56

مشکلات عملیاتی 59

فرآیند ( G-V ) برای جذب CO2 60

فصل پنجم غربالهای مولکولی 62

عمل جذب سطحی 63

خصوصیات غربالهای مولکولی 66

غربالهای مولکولی مناسب برای شیرین سازی گازها 68

عملیات تصفیه با غربالهای مولکولی 70

پارامترهای موثر در عملکرد بستر جاذب 72

اصلاح فرآیند تصفیه با غربال مولکولی 74

فرآیند اکسید آهن اسفنجی 75

مشکلات عملیاتی 77

نتیجه 79

منابع 80

لغت و گاز طبیعی منابع ارزشمند و گرانبهای زیر زمینی هستند که حداقل تا یکصد سال آینده به عنوان عمده ترین منابع انرژی در جهان باقی خواهند
ماند . در ایران به عنوان کشوری که بیش از 10% کل مخازن نفت جهان و 13% کل مخازن گاز دنیا را داراست ، صنایع نفت و گاز و صنایع وابسته به آنها دارای اهمیت زیادی هستند و استفاده زیادی از آنها خواهد شد .

گاز طبیعی که از زیر زمین تا سرچشمه بالا آورد ه می شود کاملا با گاز طبیعی مصرف کنندگان متفاوت است . اگر چه پردازش گاز طبیعی در بسیاری از جنبه ها ساده تر از پردازش و پالایش نفت خام است . اما به اندازه نفت پردازش آن قبل از استفاده توسط مصرف کنندگان ضروری است .

منبع گاز طبیعی هر چه که باشد وقتی از نفت خام ( در صورت وجود ) جدا شد معمولا در ترکیب با دیگر هیدروکربنها وجود دارد ( عمدتا اتان ، پروپان ، بوتان و پنتان ) به علاوه گاز طبیعی خام حاوی بخار آب ، سولفید هیدروژن ( H2S ) و دی اکسید کربن ( O2 H ) هلیوم ( He ) نیتروژن ( N2 ) و دیگر اجزاست پردازش گاز طبیعی شامل جداسازی تمام هیدروکربنها و مایعات مختلف از گاز طبیعی خالص است .

با اینکه در مراحل تصفیه و پالایش ، اتان ، پروپان ، بوتان و پنتان باید از گاز طبیعی جدا شوند اما این بدین معنا نیست که آنها ضایعات هستند ، در واقع ، هیدروکربنهای همراه که تحت عنوان« ضایعات گاز طبیعی » شناخته می شوند ( NGL ) یا ( NATUVAL GASLIDS ) می توانند با محصولات حاصل از پردازش گاز طبیعی بسیار ارزشمند می باشند .

علاوه بر جداسازی آب ، نفت و NGL های دیگر یکی از مهمترین قسمت های پردازش گاز شامل جداسازی CO2 و H2S است . گاز طبیعی بعضی از چاههاحاوی مقادیر مهمی از هیدروژن سولفورو دی اکسید کربن است . این گاز طبیعی به علت بوی زننده سولفور بیشتر « گاز ترش » نامیده می شود . گاز ترش غیر مطلوب است چون ترکیبات سولفوری که دارا می تواند بسیار مضر باشد حتی برای تنفس هم مرگ آوراست .

سولفوری که در گاز طبیعی وجود دارد به شکل H2S است و معمولا اگر میزان H2S از 7-5 میلی گرم در هر متر مکعب گاز طبیعی بیشتر شود . گاز ترش نامیده می شود .

خلاصه

گاز طبیعی علاوه بر هیدروکربنها ممکن است حاوی ترکیبات زیر نیز باشند :

سولفید هیدروژن ( H2S ) دی اکسید کربن ( CO2 ) آب ( H20 ) نیتروژن
( N2 ) سولفید کربنیل ( 30S ) مرکاپتانها ( RSH ) دی اکسید گوگرد ( SO2 )

سولفید هیدروژن ( H2S ) و دی اکسید کربن ( CO2 ) با آب تولید اسید سولفوریک 9 اسید کربنیک می کند و به همین خاطر به آنها گازهای اسیدی گفته می شود . تعریف گاز ترش در مراجع مختلف کمی با هم فرق دارد و در اینجا ما به گازی که مقدار ترکیبات گوگردی و دی اکسید کربن آن بیش از حد مجاز یعنی 5-7 Mq میلی گرم در هر متر مکعب ( m3 ) باشد گاز ترش
می گوییم و برعکس اگر مقدار این ترکیبات در حد مجاز باشد یعنی کمتر از 5-7 میلی گرم در هر متر مکعب باشد به آن گاز شیرین گفته می شود . بدین ترتیب شیرین سازی عملیاتی است که طی آن تعداد ترکیبات گوگردی و دی اکسید کربن گاز تا حد مجاز شان پایین آورده می شود و اگر چه بعضی از فرآیند های شیرین سازی گاز عمل خشک کردن را نیز انجام می دهند اما این تعریف شامل جداسازی آب نمی شود . فرآیند اولیه شیرین کردن گاز ترش بسیار به فرآیند نم زدایی گلایکول و جذب NGL شباهت دارد . اگر چه در این مورد از محلولهای آمین برای جدا کردن سولفید هیدروژن استفاده می شود که به این فرآیند « فرایند آمین » می گویند و در 95% از شیرین کردن گازهای ترش بکار می رود . گاز ترش از میان یک برج حرکت می کند که دارای محلول آمین است .

ترکیب این محلول بسیار به ترکیب سولفور شباهت دارد و همان طوری که گلایکول آب را جذب می کند ،‌ سولفور نیز جذب می کند . دو محلول آمین اساسی وجود دارد که در این فرآیند مورد استفاده قرار می گیرد :

1- مونواتانول آمین ( MEA ) 2- دی اتانول آمین ( DEA ) که هر کدام از این ترکیبات در شکل مایع ترکیبات سولفور را از گاز طبیعی هنگام عبور جذب می کنند . گاز باقی مانده به راستی عاری از ترکیبات سولفور است بنابراین آن ( گاز ) وضعیت ترش را از دست می دهد .

مثل فرآیند استخراج NGL و نم زادیی گلایکول محلول آمین استفاده شده
می تواند دوباره تولید شود (‌یعنی زمانی که سولفور جذب شده جدا شود ) و به آن اجازه می دهد تا دوباره برای عمل آوری گازهای ترش بیشتر استفاده شود . اگر چه بیشتر شیرین سازی گاز ترش شامل فرآیند جذب آمین است امکان استفاده از جاذب های جامد مثل اسفنج های آهنی برای جدا سازی
دی اکسید کربن و سولفید نیز وجود دارد .

عملیات شیرین سازی گازهای ترش به صورت روشهای مختلفی انجام
می گیرد که ما در این پروژه به بررسی حلالهای مورد استفاده در شیرین سازی گازهای ترش با استفاده از حلالهای فیزیکی و شیمیایی ( فرآیند های آمینی )‌و کربناتی و بسترهای جامد و کربناتها می پردازیم .

و با ارائه جداول و نمودارها و فرمولهای شیمیایی و واکنشها بیشتر به موضوع شیرین سازی گاز ترش می پردازیم . برای شیرین کردن گاز ترش از ترکیبات گوگرد زا استفاده می شود مانند آمینها R-NH2 که در صنعت سه نوع آمین بکار می رود .

1- MEA ( منواتانول آمین ) 2- DEA ( دی اتانول آمین ) 3- TEA ( تترا اتانول آمین ) که محلولهای DEA , MEA کاربرد بیشتری دارند و بهره خوبی دارند


فروش فایل کنترل وسایل منزل با استفاده از فرامین صوتی

ما اولین نیستیم ولی بی شک برترین هستیم
به صفحه دانلود فایل(کنترل وسایل منزل با استفاده از فرامین صوتی )خوش آمدید برای دانلود به توضیحات بیشتر بروید.شما پس از پرداخت هزینه ای ناچیز فایل{آرماتوربندی و اصول حاکم برآن در سازه ها }را دانلود خواهید کرد

کنترل وسایل منزل با استفاده از فرامین صوتی

بینایی سه بعدی با استفاده از نور ساختار یافته با الگوی رنگی

نظر به گستردگی روز افزون استفاده از سیستم های هوشمند لزوم بکار گیری سیستم های بینایی اتوماتیک و یا نیمه اتوماتیک به منظور بدست آوردن ابعاد جسم بر کسی پوشیده نیست در همین راستا در صنایع نیز در ایستگاههای بازرسی و کنترل کیفیت جهت بررسی دقیقتر میزان تطابق قطعه ی درحال تولید با قطعه مورد نظر ، از سیستم های بینایی استفاده می شود بدین وسیله علاوه بر
دسته بندی برق ، الکترونیک و مخابرات
بازدید ها 3
فرمت فایل doc
حجم فایل 2400 کیلو بایت
تعداد صفحات فایل 155
بینایی سه بعدی با استفاده از نور ساختار یافته با الگوی رنگی

فروشنده فایل

کد کاربری 2106
کاربر

بینایی سه بعدی با استفاده از نور ساختار یافته با الگوی رنگی

چکیده :

هدف از این پروژه استخراج پروفایل سه بعدی اجسام به استفاده از روش نور ساختار یافته ااست.

با توجه به بررسی های انجام شده نور ساختار یافته دارای مزایای ویژه ای می باشد . برای مثال سیستمهای مبتنی بر اُپتیک معمولا دارای هزینه پایین تری هستند . همچنین سیستم های بینایی استرﻳو ( شامل دو دوربین ) یا استریو فتو گرامتری برای سنجش برد کوتاه دارای کاربردهای زیادی می باشد . اما این سیستم در اندازه گیری فواصل کوتاه دارای نواقص و مشکلات مربوط به خود است . این مطلب باعث شده روشهای نور ساختار یافته در فواصل کوتاه بیشتر مورد توجه قرار گیرد . وجود کدینگ در نور ساختار یافته و کاربرد آن در تناظر یابی باعث بالاتر رفتن ضریب اطمینان می شود . برای راه اندازی این سیستم نیاز به یک پروژکتور LCD و یک دوربین تصویر برداری است که با توجه به الگو از آن می توان برای بازسازی اجسام متحرک نیز استفاده کرد . در این میان نقش اساسی را الگوریتم و نرم افزار نوشته شده برای پردازش ها و اندازه گیریها برعهده دارد . مراحل کاری این سیستم در فلوچارت به صورت کلی آورده شده است .

این سیستم دارای کاربردهای فراوانی در استخراج مدل سه بعدی اجسامی از قبیل آثار هنری ، ایجاد مدل کامپیوتری از عروسکها و مجسمه ها در کاربردهای انیمیشن سازی دارد . همچنین دارای کاربردهای قابل تطبیق، در سیستم های پزشکی و برخی مسائل صنعتی مانند مهندسی معکوس نیز می باشد .

عنوان صفحه

چکیده . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

فصل اول : تئوری نور ساختار یافته و کاربردهای بینایی سه بعدی

1-1- مقدمه . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1-2- روشهای غیر فعال بینایی سه بعدی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1-2-1- روش استریوفتوگرامتری . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1-3- روشهای فعال بینایی سه بعدی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1-3-1- بکار گیری سنسور تماسی دربینایی سه بعدی . . . . . . . . . . . . . . . . . . . 21

1-3-2- بکار گیری سنسور غیر تماسی دربینایی سه بعدی . . . . . . . . . . . . . . . . 22

1-3-2-1- روش ارسال امواج . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1-3-2-2- روش های انعکاسی. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1-3-2-2-1- رهیافتهای غیر اپتیکی در روشهای انعکاسی . . . . . . . . . . . . . . . . . 23

1-3-2-2-2- رهیافتهای اپتیکی در روشهای انعکاسی . . . . . . . . . . . . . . . . . . . 23

1-3-2-2-2-1 رادار تصویر برداری. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1-3-2-2-2-2- روشهای اینترفرومتریک . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1-3-2-2-2-3- استخراج عمق از طریق تمرکز بر روش فعال . . . . . . . . . . . . . . 27

1-3-2-2-2-4- استریوی فعال . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1-3-2-2-2-5- راستراستریوفتوگرامتری . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1-3-2-2-2-6- سیستم مجتمع تصویر برداری . . . . . . . . . . . . . . . . . . . . . . . . 29

1-3-2-2-2-7- تکنیک نور ساختار یافته . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1-4- مقایسه روشها وتکنیکها و کاربردهای آنها . . . . . . . . . . . . . . . . . . . . . . . . . 32

1-5- نتیجه گیری . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

عنوان صفحه

فصل دوم : روشهای مختلف کدینگ الگو

2-1- مقدمه . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2-2- روشهای طبقه بندی کدینگ الگوهای نوری . . . . . . . . . . . . . . . . . . . . . . 38

2-2-1- الگوهای نوری از دیدگاه درجات رنگی . . . . . . . . . . . . . . . . . . . . . . . . 39

2-2-2- الگوهای نوری از دیدگاه منطق کدینگ. . . . . . . . . . . . . . . . . . . . . . . . 40

2-2-2-1- روشهای مبتنی بر الگوهای چند زمانه (کدینگ زمانی) . . . . . . . . . . 42

2-2-2-1-1- کدینگهای باینری. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2-2-2-1-2- کدینگ با استفاده از مفهوم n-ary. . . . . . . . . . . . . . . . . . . . . . 44

2-2-2-1-3- کدینگ با استفاده از مفهوم انتقال مکانی. . . . . . . . . . . . . . . . . . 45

2-2-2-1-4- کدینگ با استفاده از همسایگی. . . . . . . . . . . . . . . . . . . . . . . . . 46

2-2-2-2- روشهای مبتنی بر همسایگیهای مکانی(کدینگ مکانی) . . . . . . . . . 48

2-2-2-2-1- کدینگهای غیر متعارف (ابتکاری) . . . . . . . . . . . . . . . . . . . . . . . 48

2-2-2-2-2- کدینگ بر اساس دنباله De_Bruijn[1]. . . . . . . . . . . . . . . . . . . . 50

2-2-2-2-3- کدینگ بر اساس منطق M-Arrays. . . . . . . . . . . . . . . . . . . . . 52

2-2-2-3- کدینگ مستقیم . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2-3- نتیجه گیری. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

عنوان صفحه

فصل سوم :پیاده سازی کدینگ و پردازش تصویر

3-1- مقدمه . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3-2- تولید کلمه های رمز با استفاده از دنباله De_Bruijn. . . . . . . . . . . . . . . . 59

3-3- تابش الگو و عکسبرداری. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3-4- پردازش تصویر . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3-4-1- دوسطحی سازی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3-4-2- تشخیص لبه ها و اسکلت بندی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3-4-3- نازک سازی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3-4-4 نقاط تقاطع . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3-4-5- شناسایی خطوط . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3-5- نتیجه گیری . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

عنوان صفحه

فصل چهارم :

شناسایی رنگ و حل مسئله تطابق و بازسازی سه بعدی

4-1- مقدمه . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4-2- شبکه عصبی و شناسایی رنگ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4-2-1- مسئله تغییر رنگ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4-3- طراحی شبکه عصبی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4-4- مسئله تطابق . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4-5- بازسازی سه بعدی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4-6- بررسی خطاهای موجود. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4-6-1- تغییر رنگ و خروجی غیر قطعی شبکه. . . . . . . . . . . . . . . . . . . . . . . . 103

4-6-2- ناپیوستگی های تصویر رنگی. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4-6-3-خطای همپوشانی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4-7- نتیجه گیری . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

عنوان صفحه

فصل پنجم : نتیجه گیری و پیشنهادات

5-1 مقدمه . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5-2- انتخاب روش و پیاده سازی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5-3- پیشنهادات . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

پیوست الف : نرم افزار تهیه شده . . . . . . . . . . . . . . . . . . . . . . . . . 111

پیوست ب : مثلث بندی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

مراجع . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

عنوان صفحه

شکل 1-1) ساختار سیستم استریوفتوگرامتری. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

شکل 1-2) روشهای استخراج پروفایل سه بعدی. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

شکل 1-3) تصویر برداری از سطوح مختلف توسط رادار . . . . . . . . . . . . . . . . . . . . . . . . 24

جدول 1-1 : تاخیر زمانی امواج صوتی و نوری . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

شکل 1-4 : a ) مویره سایه b ) مویره تصویر. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

شکل 1-5 : دستگاه اندازه گیری سه بعدی بر اساس روش مویره. . . . . . . . . . . . . . . . . . . . . . 27

شکل 1-6 : ساختار سیستم راستر استریو فتوگرامتری. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

شکل 1-7 : ساختار یک سیستم مجتمع تصویر برداری. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

شکل 1-8 : ساختار سیستم نور ساختاریافته. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

شکل 1-9 :تصویر نورساختار یافته موازی . این تصویر با تاباندن یک الگو با خطوط عمودی موازی بر روی صورت ساخته شده است . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

جدول 1-2 :مقایسه روشها و کاربرد آنها . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

شکل2-1 : طبقه بندی روشهای کدینگ در نورساختاریافته. . . . . . . . . . . . . . . . . . . . . . . . . . 41

شکل2-2 : پرده های نوری و نحوه بکارگیری یک الگوی چند زمانه . . . . . . . . . . . . . . . . . . . 43

شکل2-3 : نمونه بازسازی تصویر مجسمه اسب و نقاط دست انسان به وسیله الگوی چند زمانه و روش Postdamer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 43

شکل2-4 : نمونه الگوهای طراحی شده با روش n-ary . . . . . . . . . . . . . . . . . . . . . . . . . . 44

شکل2-5 : نمونه بازسازی تصویر مجسمه اسب و نقاط دست انسان به وسیله الگوی چند زمانه و تکنیک n-ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

شکل2-6 : نمای پیک تصویر و انتقال مکانی آن . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

شکل2-7 : a) الگوی شامل خطوط بریده با اندازه خطوط به عنوان مشخصه مهم b) الگوی تشکیل شده از خطوط افقی با سه سطح خاکستری . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

شکل2-8 : الگوی طراحی شده با دنباله De-Bruijn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

شکل 2-9 : a) طراحی الگوی مرانو b)الگوی کامل شده مرانو. . . . . . . . . . . . . . . . . . . . . . . . . 53

شکل 2-10 : نمونه بازسازی تصویر مجسمه اسب و نقاط دست انسان به وسیله تکنیک M-Array

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

شکل 2-11 : الگوی طراحی شده توسط گریفین. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

شکل 2-12 : الگوی خاکستری در رمز نگاری مستقیم . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

شکل 3-1 : گراف مربوط به B(2,3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

شکل 3-2 : نرم افزار نوشته شده برای تولید الگو و کد . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 شکل 3-3 : نمونه الگوی طراحی شده . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

شکل 3-4 :تابش نور و شرایط عکس برداری . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

شکل 3-5 : فلوچارت مراحل تناظر یابی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

شکل 3-6 : عمل دوسطحی سازی در نرم افزار نوشته شده . . . . . . . . . . . . . . . . . . . . . . . . 70

شکل 3-7 : نمونه عمل دوسطحی سازی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

شکل 3-8 : نمونه خطای ایجاد شده در استفاده از الگوریتم سبل . . . . . . . . . . . . . . . . . . . . 71

شکل 3-9 : نمونه نا پیوستگی ایجاد شده در استفاده از الگوریتم اسکلت بندی ساده . . . . . . . 72

شکل 3-10 : تصویر خروجی مرحله شناسایی لبه ها در نرم افزار نوشته شده . . . . . . . . . . . . . 73

شکل 3-11 : تصویر خروجی مرحله شناسایی لبه ها پس از اعمال ماسک (خطوط پیوسته هستند) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

شکل 3-12 :نمونه تصویر خروجی مرحله نازک سازی. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

شکل 3-13 :ماسکهای استفاده شده برای کشف نقاط تقاطع . . . . . . . . . . . . . . . . . . . . . . . . 76

شکل3-14 : دسته نقاط یافت شده به عنوان نقاط تقاطع . . . . . . . . . . . . . . . . . . . . . . . . . . 77

شکل 3-15 : نقاط تقاطع نهایی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

شکل 3-16 : شکل رنگی نشان دهنده اثر همپوشانی خطوط . . . . . . . . . . . . . . . . . . . . . . . 78

شکل 3-17 : برچسب گذاری تصویر اسکلت بندی شده . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

شکل 3-18 : بخشی از فایل خروجی شناسایی خطوط. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

شکل 4-1 : مقادیر کانالهای رنگی در تصویر گرفته شده از جسم . . . . . . . . . . . . . . . . . . . . . 88

شکل 4-2 :نرم افزار نوشته شده برای بدست آوردن نقاط نمونه از تصویر و مقادیر کانالهای رنگی متناظر نقاط از تصویر گرفته شده از جسم . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

شکل 4-3 : شبکه عصبی طراحی شده . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

شکل 4-4 : نمودار خطای آموزش شبکه برای تصویر الگو . . . . . . . . . . . . . . . . . . . . . . . . . . 91

شکل 4-5 : نمودار خطای آموزش شبکه برای تصویر الگوی تابیده شده روی شی . . . . . . . . 91

جدول 4-1 : قسمتی از اطلاعات خروجی شبکه پس از عمل گرد سازی . . . . . . . . . . . . . . . . 93

شکل 4-6 : فلوچارت مراحل تناظر یابی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

جدول 4-2 : قسمتی از جدول امتیاز دهی به تصویر نقاط الگو و تصویر جسم. . . . . . . . . . . . 96

جدول 4-3 : قسمتی از جدول نقاط تناظر داده شده و اختلاف مختصات آنها . . . . . . . . . . . . 98

شکل 4-7 : تصویر یک جعبه تحت تابش . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

شکل 4-8 : شکل سه بعدی جعبه از روی برایند اختلاف مختصات دو نقطه . (محور عمودی ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

شکل 4-9 : تصویر یک ماوس تحت تابش . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

شکل 4-10 : شکل سه بعدی جعبه از روی برایند اختلاف مختصات دو نقطه (محور عمودی ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

شکل 4-11 : تصویر یک گلدان تحت تابش . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

شکل 4-12 : شکل سه بعدی گلدان از روی برایند اختلاف مختصات دو نقطه .(بدست آمدن شکل تقریبی نیم استوانه ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

شکل الف -1 : محیط برنامه نویسی C# و راه حل به همراه پروژه های تولید الگو و پردازش تصویر و تولید نقاط نمونه برای ورودی شبکه عصبی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

شکل الف -2 : تصویر یک جعبه رنگ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

شکل الف -3 : تصویر فرم مربوط به ایجاد الگو در برنامه نوشته شده . . . . . . . . . . . . . . . . . 116

شکل الف -4 : یک الگوی مناسب تولیدی توسط برنامه . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

شکل الف -5 : نمایی از فرم برنامه تهیه شده . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

شکل الف -6 : نمایی از برنامه پردازش تصویر در حال کار. . . . . . . . . . . . . . . . . . . . . . . . . . 119

شکل الف-7 : نمایی از برنامه در حال فعال بودن نمودار هیستوگرام و انجام عمل اکولایز کردن120

شکل ب-1 :دو دستگاه مختصات الگو و تصویر در سیستم نوری نور ساختاریافته. . . . . . . . . . 123 .

شکل ب-2 : هندسه ساده سیستم نوری نور ساختاریافته. . . . . . . . . . . . . . . . . . . . . . . . . 124

شکل ب-3 : هندسه مربوط به دوربین و پروژکتور . H نقطه ای از جسم است که توسط پروژکتور روشن شده است . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

شکل ب-4 : مدل pinhole پروژکتور برای محاسبه پهنای خطوط . . . . . . . . . . . . . . . . 129

مقدمه :

نظر به گستردگی روز افزون استفاده از سیستم های هوشمند لزوم بکار گیری سیستم های بینایی اتوماتیک و یا نیمه اتوماتیک به منظور بدست آوردن ابعاد جسم بر کسی پوشیده نیست . در همین راستا در صنایع نیز در ایستگاههای بازرسی و کنترل کیفیت جهت بررسی دقیقتر میزان تطابق قطعه ی درحال تولید با قطعه مورد نظر ، از سیستم های بینایی استفاده می شود . بدین وسیله علاوه بر مشخص شدن مورد خطا ، محل دقیق آن و میزان خرابی نیز مشخص می شود .

از جمله موارد کاربرد دیگر سیستم بینایی می توان به علوم نظامی ، پزشکی ، باستانشناسی ، راه و ساختمان و زمین شناسی و هدایت ربات اشاره کرد که روز به روز استفاده از سیستم های بینایی در آنها افزایش می یابد . سیستم های بینایی معمولی ، تنها به گرفتن یک تصویر دو بعدی از جسم اکتفا می کنند و قادر به تشخیص فاصله و یا ارتفاع و عمق نیستند . به همین دلیل و برای داشتن اطلاعات بیشتر از جسم ، محققان تلاش خود را بر روی بدست آوردن اطلاعات از بعد سوم (محور Z) متمرکز کردند .

در راستای این تلاشها رهیافتهای متفاوتی جهت اسکن سه بعدی یک جسم ارائه شد . در این میان اسکنرهای تماسی مبتنی بر سنسورهای تماسی مکانیکی و اسکنرهای غیر تماسی مبتنی بر تکنولژی اپتیکی از جمله راه کارهایی هستند که محققان در پیش رو دارند . و در این میان راه کارهای اپتیکی به دلیل انعطاف پذیر بودن و هزینه قابل قبول ترجیح داده می شوند . ضمن اینکه در خیلی از موارد از دقت و قدرت بالاتری در مقایسه با تکنولژی تماسی برخوردار هستند .

در تحقیق انجام شده پس از بررسی انواع روشهای اپتیکی برای استخراج پروفایل سه بعدی ، یک سیستم نوری بر مبنای نور ساختاریافته کدینگ شده پس از بررسی روشهای کار شده در این زمینه ، پیاده سازی می شود .

فصل اول به بررسی روشهای متفاوت استخراج مدل سه بعدی اشیاء می پردازد. علاوه بر آن کاربردهای مختلف بینایی سه بعدی ارائه می شود . در فصل دوم تکنیکهای مختلف کدینگ الگو در نور ساختاریافته بررسی می شود . در فصل سوم که آغازی برای پیاده سازی است با طراحی یک نوع کدینگ به طراحی یک الگو پرداخته می شود و پردازشهای لازم اولیه در تصاویر برای کشف رمزها توضیح داده می شوند . فصل چهارم با توضیح استفاده از شبکه عصبی برای تعیین کد رنگهای بدست آمده در ادامه به حل مسئله تطابق می پردازد و در نهایت یک بازسازی سه بعدی اولیه از جسم ارائه می دهد . در نهایت در فصل پنجم به جمع بندی فصول گذشته پرداخته شده و پیشنهاداتی برای ادامه کار داده خواهند شد . در صفحه بعدی فلوچارتی از مراحل کلی کار آورده شده که به طور کلی نمایانگر مراحل کاری می باشد .


جهت دریافت فایل بینایی سه بعدی با استفاده از نور ساختار یافته با الگوی رنگی لطفا آن را خریداری نمایید


بررسی میزان ونوع استفاده ازاینترنت توسط دانشجویان

اینترنت، در ساده ترین تعریف، عبارتست از کامپیوترهایی که در سراسر دنیا به هم متصل هستند، شبکه ای که این کامپیوترها را به یکدیگر متصل می سازد، و متدهای انتقال اطلاعات روی این شبکه منشاء اینترنت را می توان در سالهای جنگ سرد یافت، زمانی که احتمال شروع یک جنگ هسته ای بین ایالات متحده و اتحاد جماهیر شوروی کاملا وجود داشت در آن سالها وزارت دفاع آم
دسته بندی روانشناسی و علوم تربیتی
بازدید ها 1
فرمت فایل doc
حجم فایل 198 کیلو بایت
تعداد صفحات فایل 85
بررسی میزان ونوع استفاده ازاینترنت توسط دانشجویان

فروشنده فایل

کد کاربری 2106
کاربر

بررسی میزان ونوع استفاده ازاینترنت توسط دانشجویان

مقدمه تعریف موضوع تحقیق

اینترنت، در ساده ترین تعریف، عبارتست از کامپیوترهایی که در سراسر دنیا به هم متصل هستند، شبکه ای که این کامپیوترها را به یکدیگر متصل می سازد، و متدهای انتقال اطلاعات روی این شبکه.

منشاء اینترنت را می توان در سالهای جنگ سرد یافت، زمانی که احتمال شروع یک جنگ هسته ای بین ایالات متحده و اتحاد جماهیر شوروی کاملا وجود داشت. در آن سالها وزارت دفاع آمریکا بدنبال یک سیستم مخابراتی بود که بتواند حتی در مقابل ضربات یک جنگ اتمی دوام آورد و از هم نپاشد.

این پروژه که Arpanet نام گرفت، در سال 1968 شروع شد. این شبکه در اولین قدم (محکم) خود چهار کامپیوتر را در نقاط مختلف آمریکا به هم متصل کرد. خوب، این اقدام در آن سال ها بسیار فوق العاده بود .

بزودی معلوم شد که چنین شبکه ای بطور بالقوه دارای توانائیهای بسیار بیشتری از آنچه مسئولان وزارت دفاع در تصور داشتند، است. تبادل اطلاعات علمی و مهندسی از این نمونه بود.

همچنین معلوم شد که یک شبکه واحد هرگز نمی تواند به هدفی که برای آن در نظر گرفته شده بود (توانایی مقاومت در مقابل ضربه هسته ای) دست یابد. به جای آن تصمیم گرفته شد تا شبکه های موجود به هم متصل شوند و به عبارت دیگر شبکه ای از شبکه ها ساخت شود. نام اینترنت هم از همین جا نشات گرفت. اینترنت اولیه فقط دانشگاهها و مراکز تحقیقاتی را به هم متصل می کرد و چون تحت کنترل دولت قرار داشت افراد و شرکتهای خصوصی راهی به آن نداشتند.

این وضع تا سال 1991 ادامه داشت، اما از این تاریخ اوضاع بسرعت دگرگون شد. در این سال بنیاد ملی علوم (NSF)، که بزرگترین تامین کننده مالی اینترنت بود، سرمایه خود را از آن خارج کرد و اینترنت را بر روی شرکتهای تجاری گشود. و بزودی سیل خروشانی ، که امروز آنرا می شناسیم تبدیل شد، و شروع این رشد

انفجاری با شبکه تارعنکبوتی جهانی (وب) همراه بود.

اینترنت یک چیز مستقل نیست که دیگران کامپیوترهایشان را به آن متصل کنند. بلکه اینترنت خود حاصل بهم پیوستن این کامپیوترهاست. در واقع وقتی به کامپیوترهای یک سرویس دهنده اینترنت (ISP) متصل می شوید، کامپیوتر شما هم جزئی از اینترنت می شود.

اینترنت به انواع بسیار گوناگونی از سرویس های مخابراتی ، از خطوط ساده تلفنی گرفته تا کابل های نوری پر سرعت و کانال های ماهواره ای، متکی است. اگر این کانال های مخابراتی را بزرگراه اینترنت بدانیم، مسیریاب ها (routers ) کامپیوترهایی که بر انتقال اطلاعات بین نقاط مختلف نظارت می کنند، پلیس های راهنمایی آن هستند.

حال ما میخواهیم دراین بحث به بررسی استفاده دانشجویان کشورخودمان ازاینترنت بپردازیم.اینکه میزان وهمچنین نوع استفاده ازاینترنت دربین دانشجویان مابه چه شکلی است.

اهداف کلی وآرمانی تحقیق

میزان استفاده دانشجویان دانشگاه آزادمشهدرادر استفاده ازاینترنت توصیف وبررسی کنیم.

انواع زمینه های مورداستفاده ازاینترنت راتوسط دانشجویان دانشگاه آزادمشهدتوصیف وبررسی کنیم.

هدفهایاسوالهایافرضهای ویژه تحقیق

1-استفاده ازاینترنت توسط دانشجویان دانشگاه آزادمشهدبه چه میزان است؟

2-آیاجنسیت درمیزان ونوع استفاده ازاینترنت تاثیرگذاراست؟

3-عمده استفاده دانشجویان دانشگاه آزادمشهددرچه زمینه ای است؟

4-آیااین دانشجویان ازکیفیت اینترنت درکشورراضی هستند؟

5-اهم مشکلات دانشجویان دانشگاه آزادمشهدچیست؟

روش انجام تحقیق

دراین تحقیق قصدبرآن است که ازیکی ازروشهای تحقیق توصیفی به نام تحقیق زمینه یاب(پیمایشی)استفاده شود.زیرادراصل مابه دنبال این هستیم که این پدیده:میزان ونوع استفاده ازاینترنت توسط دانشجویان راشرح وتوصیف نماییم.میخواهیم شرایط راآنگونه که درواقعیت وجودداردفقط توصیف کنیم.برای این منظورازروش تصادفی ساده بهره جسته ایم.برای آنکه نمونه هاتصویرواقعی ازجامعه موردنظر(دانشجویان دانشگاه آزادمشهد)باشندسعی شده حتی الامکان ازرشته های مختلف وسنهای مختلف وجنسیتها ی مختلف انتخاب شوند.

روش جمع آوری اطلاعات مابااستفاده ازپرسشنامه بود.همچنین برای تجزیه وتحلیل اطلاعات ازجداول فراوانی ورسم نمودارهای مختلف بهره جسته ایم.

اهمیت موضوع تحقیق

توسعه اطلاعات تحولات بنیادینی در حوزه‌های مختلف جامعه بشری اتفاق افتاده است که بعضا از آن تحت عنوان انقلاب یاد می‌شود یاد می شود .دستاورداین انقلاب در جامعه بشری بیشتر مربوط است به کاربردهای مختلف فناوری اطلاعات در حوزه‌های مختلف عملکرد اجتماعی نظیر اقتصاد، تجارت، بهداشت، آموزش و غیره.

سازمان همکاری‌های اقتصادی و توسعه (OECD) در تعریف فناوری اطلاعات آن را مشتمل می‌داند بر مجموع صنایع تولیدی و خدماتی که برای نگهداری، انتقال و نمایش داده‌ها و اطلاعات به صورت الکترونیکی استفاده می‌شود. مهمترین مشخصه این فناوری نسبت به فناوری‌های قبلی که شکل انقلابی به آن داده است، مجتمع شدن ویژگی‌هایی نظیر دوطرفه بودن، جهانی بودن، فراگیر بودن، چند کاناله بودن و غیره بطور همزمان در یک فناوری خاص است. تمامی فناوری‌هایی که قبلا مورد بهره‌برداری اطلاعاتی و ارتباطی قرار می‌گرفت (نظیر تلفن، تلویزیون، رادیو، ماهواره، فاکس) از دو یا چند مورد از این ویژگی‌ها محروم بود. اما فناوری اطلاعات و ارتباطات که اکنون در قالب تحول صنعت ارتباطات از آن یاد می‌شود تمام این ویژگی‌ها را بطور همزمان و یکجا در خود جای داده است

بررسی میزان ونوع استفاده ازاینترنت توسط دانشجویان

روانشناسی