رپو فایل

مرجع دانلود و خرید فایل

رپو فایل

مرجع دانلود و خرید فایل

بررسی و طراحی مبدلهای زبا استفاده از روش پینچ

مبدل ها تجهیزاتی هستند که جریان گرمایی را بین دو یا چند سیال در دماهای مختلف فراهم می کنند مبدل های گرما در محدوده وسیعی از کاربردها استفاده میشوند این کاربردها شامل تولید برق،صنایع فرایندی شیمیایی،غذایی،الکترونیک،مهندسی،محیط زیست،بازیابی گرمای استفاده نشده،صنایع ساخت و تولید تهویه مطبوع،تبرید و کاربردهای فضایی می باشند
دسته بندی مهندسی شیمی
بازدید ها 0
فرمت فایل docx
حجم فایل 2380 کیلو بایت
تعداد صفحات فایل 44
بررسی وطراحی مبدلهای حرارتی با استفاده از روش پینچ

فروشنده فایل

کد کاربری 3230
کاربر

بررسی وطراحی مبدلهای حرارتی با استفاده از روش پینچ

فهرست

عنوان صفحه

مقدمه

مبدل گرمایی 1

نقش مبدلهای حرارتی 2

خطوط انتقالVSC راهی به آینده 2

از گرمای درون 4

انرژی گرمایی زمین و کاربردهای آن 10

نیروگاههای جدید حرارتی با سیستم انرژی پاک 21

نیروگاه های هسته ای 25

سیستم های ذخیره ساز یخ 27

تقسیم بندی مبدلهای گرمایی 30

مبدلهای حرارتی روش پینچ 38

منابع 44

منابع:

1- پژوهشکده صنعت نفت

2- نشریه مبدلهای گرمایی

3- دسته بندی مبدلهای گرمایی مهندس احمد رضا علمی

4- شرکت ملی نفت خیز جنوب مهندس علی داسمه

5-اداره مهندسی بهره برداری

مبدل حرارتی

مبدل ها تجهیزاتی هستند که جریان گرمایی را بین دو یا چند سیال در دماهای مختلف فراهم می کنند. مبدل های گرما در محدوده وسیعی از کاربردها استفاده میشوند. این کاربردها شامل تولید برق،صنایع فرایندی شیمیایی،غذایی،الکترونیک،مهندسی،محیط زیست،بازیابی گرمای استفاده نشده،صنایع ساخت و تولید تهویه مطبوع،تبرید و کاربردهای فضایی می باشند.

مبدل ها را می توان طبق معیار زیر طبقه بندی کرد:

1) مبدل های گرمایی از نظر انتقال گرما و بازیابی گرما

2) مبدل های گرمایی از نظر فرایند انتقال

3) مبدل های گرمایی از نظر هندسه ساختار

4) مبدل های گرمایی از نظر مکانیزمهای انتقال گرما

5) مبدل های گرمایی از نظر آرایش جریان های گرم و سرد

یکی از مهمترین و بارزترین اختلاف بین مبدل ها، از نظر شکل و ساختار می باشد و مبدل های گرما از نوع تماس غیر مستقیم اغلب طبق مشخصات ساختاریشان توصیف می شوند و انواع عمده دسته بندی مبدل ها از نظر شکل و ساختار شامل لوله ای،صفحه ای و پره دار می باشد

نقش مبدلهای حرارتی

1- خطوط انتقالVSC راهی به آینده

خطوط انتقال *VSC یا خطوط انتقال با مبدلهای منبع ولتاژی امروزه واقعیت و تحقق یافته و همچنان که جنبه های خاصی از آن کاربرد می یابد بیشتر مورد استفاده قرار می گیرند. اولین سیستم انتقالVSC تحت عنوان طراحی خطوط HVDC سبک توسط شرکت ABB ساخته شده است. خود مبدلهای منبع ولتاژی دارای کاربرد در کنترل ادوات FACTS و UPFC بوده است. اما چنانچه مبدلهای منبع ولتاژی بهمراه خطوط DC و یا کابل استفاده گردند تشکیل خطوط VSC را خواهند داد.

در خطوط VSC همراه با کابل، چون در VSC از دیود با هدایت یکسو استفاده میگردد، لذا ولتاژDC در کابل نمی تواند هرگز جهت پلاریته خود را تغییر دهد. این ویژگی با عث میشود که مشکل بارهای الکتریکی با قیمانده در فضای داخل کابلهای از بین رفته و نتیجتا مجاز به کاهش قدرت عایقی آنها شده که این خود اجازه استفاده از فرآیند مفصل بندی در کابلها را میدهد. ویژگیهای فوق سبب کوچک، سبک و ارزان شدن کابل ها می گردند.

در خطوط VSC ولتاژ متوسط، میتوان کابلهای سبک و کوچک را در زیرزمین قرار داد. در گزارش اخیر IEEE کاربرد جالبی از خطوط VSC بین شهرهای New South Wales و Queensland در کشور استرالیا گزارش شده است. چون خطوط بصورت کابل زیرزمینی می باشند دارای مسائل محیطی کمتری در مقایسه با خطوط هوائی خواهند بود.

در گزارش پروژه Directlink تأسیس یک خط VSC بظرفیت 180 مگا ولت آمپر با کابل زیرزمینی در سال 1999 توسط شرکت ABB گزارش شده است. خطوط VSC نیز بطور ذاتی دارای خاصیت و ویژگی های ادوات FACTS بشرح زیر می باشند.

1- توانائی کنترل مستقل ولتاژ AC در هر یک از شینهای دو سر خط

2- با کنترل سریع توان میتواند برای افزایش میرائی نوسانات الکترومکانیکی توان در شبکه های AC استفاده گردد.

3- طرف انتهائی خطوط VSC میتواند صرفا بار الکتریکی بدون شبکه و ژنراتور باشد در اینصورت مبدلهای VSC میتوانند بار را با یک ولتاژ AC تحت یک دامنه و فرکانس تعریف شده تغذیه نمایند.

* Voltage Sourced Convertor

با یک چنین مزایائی چنانچه هزینه و قیمت خطوط VSC قابل قبول باشد میتوانند در شبکه های ولتاژ متوسط بخوبی بکار گرفته شوند. بنابراین خطوط VSC میتوانند بعنوان عامل تقویت و ثبات سنکرونیزاسیون شبکه عمل نمایند. شکل (1) ساختار کلی یک VSC را نشان میدهد.

شکل (1) : ساختار کلی یک خط انتقال VSC

در یک VSC عناصر کلیدزنی یا از نوع GTO و یا TGBT می باشند که بصورت روشن / خاموش کار کرده و میتوانند براساس الگوریتم PWM کنترل شوند. این الگوریتم میتواند در جهت حذف و یا کاهش هارمونیکی عمل نماید.

با اعمال الگوریتم PWM در اینصورت حداقل 4 متغیر از خط VSC می باید کنترل شود. چنانچه در انتهای خط منبع ولتاژ ac وجود نداشته باشد در اینصورت ولتاژ و فرکانس آن قابل کنترل می باشد. اما چنانچه در انتهای خط منبع ولتاژ ac وجود داشته باشد در اینصورت مبدل های VSC ولتاژ ac انتهائی را کنترل می نمایند.

با بکارگیری خطوط VSC ویژگی سنکرونیزاسیون در شبکه های ac منتفی خواهد شد. از دیگر ویژگی های خطوط VSC در مقایسه با خطوط معمولی افزایش ضریب میرائی نوسانات الکترومکانیکی در شبکه ها می باشد. در حقیقت خطوط VSC نوعی از کنترل کننده های FACTS بوده که قادر هستند ولتاژ AC شینهای ابتدا و انتهائی، توان انتقالی از خط، درجه سنکرونیزاسیون و ضریب میرائی نوسانات را کنترل نمایند.

2- از گرمای درون

زمینی که زیر پای ما قرار دارد، منبع بسیار عظیم انرژی است. این انرژی که به صورت حرارت از اعماق زمین به سطح آن هدایت می شود در صورت توسعه فناوری استخراج آن، به تنهایی قادر خواهد بود کلیه نیازهای انرژی امروز و آینده بشر را تامین کند. طبق محاسبه ها، مشخص شده است که انرژی حرارتی ذخیره شده در ۱۱ کیلومتر فوقانی پوسته زمین معادل پنجاه هزار برابر کل انرژی به دست آمده از منابع نفت و گاز شناخته شده امروز جهان است. پس این منبع عظیم انرژی می تواند در آینده جایگزین قابل اطمینانی برای انرژی حاصل از سوخت های فسیلی باشد. البته بدیهی است که بهره برداری گسترده از ذخایر انرژی زمین گرمایی، مستلزم توسعه بیشتر در زمینه تکنیک های اکتشاف و استخراج آن است.

انرژی زمین گرمایی چیست اصطلاح زمین گرمایی ترجمه واژه Geothermal است که ریشه یونانی داشته و از کلمات Geo به معنای زمین و Therme به معنی حرارت تشکیل شده است. در حقیقت انرژی زمین گرمایی، انرژی ای است که از سیال آب داغ یا بخارداغ موجود در اعماق زمین به دست می آید. این انرژی در مخزن زمین گرمایی متمرکز شده است که برای دسترسی به آن در محل مخزن، چاهی عمیق حفر می کنند. سیال خروجی از چاه، عامل انتقال انرژی از مخزن به سطح زمین است. البته عمق مخزن زمین گرمایی نباید بیش از سه هزار متر باشد زیرا بهره برداری از انرژی آن با فناوری کنونی بشر توجیه اقتصادی ندارد. با افزایش عمق زمین درجه حرارت افزایش می یابد. این افزایش حرارت را شیب حرارتی می نامند. تمام منابع انرژی زمین گرمایی در نقاطی واقع شده اند که از شیب حرارتی بالایی برخوردارند.

تاریخچه این انرژی از ابتدای خلقت مورد استفاده انسان بوده است. بدین ترتیب که از آن برای شست وشو، پخت وپز، استحمام، کشاورزی و درمان بیماری ها استفاده می شد. اسناد و مدارک موجود ثابت می کند که ساکنان کشورهایی نظیر چین، ژاپن، ایسلند و نیوزیلند در گذشته های دور از این انرژی استفاده می کردند. در سال ۱۸۲۸ فردی به نام لاردرللو در کشور ایتالیا برای تهیه اسید بوریک از حرارت آب های گرم به جای سوزاندن هیزم استفاده کرد. در سال ۱۹۰۸ در منطقه مذکور نخستین نیروگاه زمین گرمایی به ظرفیت ۲۰ کیلووات راه اندازی شد که در سال ۱۹۴۰ ظرفیت آن به ۱۲۷ مگاوات افزایش یافت. تا سال ۱۹۵۰ بهره گیری از انرژی زمین گرمایی رشد چندانی نداشت، اما حد فاصل سال های ۱۹۵۰ تا ۱۹۷۳ به دلیل گران شدن بی سابقه و ناگهانی نفت، همه کشورها به فکر استفاده از انرژی های جایگزین افتادند و به تدریج کشورهایی چون آمریکا، ایسلند، فیلیپین، اندونزی و اغلب کشورهایی که روی کمربند زمین گرمایی جهانی قرار داشتند بهره برداری از این انرژی را شروع کردند.

نشانه های انرژی زمین گرمایی مهمترین نشانه های منابع زمین گرمایی موارد زیر است: سنگ های آتشفشانی جوان جوان تر از یک میلیون سال چشمه های آبگرم بخارفشان یا گازفشان آب فشان نواحی دگرسان شده گل فشان کوه های آتشفشانی فعال البته ذکر این نکته ضروری است که برای آغاز بررسی های اکتشافی در یک منطقه زمین گرمایی، بیش از یک نشانه باید در منطقه وجود داشته باشد.

موارد کاربرد انرژی زمین گرمایی پس از انجام بررسی های اکتشافی و حفر چاه های اکتشافی و تولیدی در میدان زمین گرمایی، مسئله کاربرد انرژی زمین گرمایی مطرح می شود. مهمترین عامل در تعیین نوع کاربرد مخزن زمین گرمایی، درجه حرارت آن است. امروزه منابع زمین گرمایی را بر اساس درجه حرارت به سه دسته کلی حرارت بالا، حرارت متوسط و حرارت پایین تقسیم می کنند. مبنای این تقسیم بندی، درجه حرارت مخزن در عمق یک کیلومتری زمین است. به این ترتیب که اگر درجه حرارت مخزن در عمق مذکور بیش از ۲OOC باشد آن را حرارت بالا می نامند. درجه حرارت مخازن حرارت متوسط و پایین به ترتیب بین ۱۵۰C و ۲۰۰C و کمتر از ۱۵۰C است. امروزه از مخزن های زمین گرمایی به دو صورت عمده کاربرد غیر مستقیم تولید برق و کاربرد مستقیم انرژی حرارتی استفاده می شود.

تولید برق به منظور تولید برق از انرژی زمین گرمایی، سیال مخزن آب داغ یا بخار از طریق چاه های حفر شده به سطح زمین هدایت شده و پس از به چرخش درآوردن توربین در نیروگاه، برق تولید می کند. بدیهی است که از مخازن حرارت بالا بیشتر برای تولید برق استفاده می شود. در حال حاضر ۲۲ کشور جهان به کمک منابع زمین گرمایی خود بیش از MW ۸۲۰۰ برق تولید می کنند. در نیروگاه های زمین گرمایی، انرژی الکتریکی به کمک چرخه های مخصوصی تولید می شود. مهمترین و رایج ترین آنها عبارتند از: ▪چرخه تبخیر آنی در این دسته از چرخه های تولید برق، سیال زمین گرمایی پس از خروج از چاه، وارد یک جداکننده شده و بخار حاصل به سمت توربین و آب داغ به سمت چاه های تزریقی و برج خنک کننده روانه می شود. حال، برحسب اینکه عمل جدایش یا تبخیر آنی در یک مرحله یا دو مرحله انجام شود و برحسب وجود یا عدم وجود کندانسور، سه نوع چرخه تبخیر آنی وجود دارد: چرخه تبخیر آنی یک مرحله ای بدون کندانسور، چرخه تبخیر آنی یک مرحله ای با کندانسور، چرخه تبخیر آنی دومرحله ای.

چرخه دومداره از این چرخه برای تولید برق از مخزن های زمین گرمایی حرارت پایین استفاده می شود. حدود ۵۰ درصد مخازن زمین گرمایی شناخته شده جهان درجه حرارتی بین ۱۵۰C تا ۲۰۰C دارند، که اگر برای تولید برق از آنها از چرخه تبخیر آنی استفاده شود، چرخه مزبور بازده بسیار پایینی خواهد داشت. در این چرخه از سیال عامل برای تولید برق استفاده می شود بدین ترتیب که آب داغ، سیال عامل را در یک مبدل حرارتی، گرم و به بخار تبدیل می کند. بخار حاصل، توربین را به حرکت در آورده، برق تولید می کند. از جمله مزیت های مهم این چرخه، عدم وجود خوردگی یا رسوب گذاری توسط سیال عامل است. در حال حاضر مهمترین کشورهای جهان از نقطه نظر تولید برق از منابع زمین گرمایی، کشورهای آمریکا ۲۲۲۸ مگاوات، فیلیپین ۱۹۰۹ مگاوات، ایتالیا ۷۶۹ مگاوات، مکزیک ۷۵۵ مگاوات و اندونزی ۵۹۰ مگاوات هستند.


نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.