رپو فایل

مرجع دانلود و خرید فایل

رپو فایل

مرجع دانلود و خرید فایل

بتن، ملات، و دوغابهای منبسط شونده

دلیل عمده استفاده از بتن، ملات و دوغابهای منبسط شونده آن است که بتوان بر مشکلات انقباض (جمع شدگی) که معمولاً در به کارگیری مواد با سیمان معمولی مشاهده می شود فائق آمد مکانیزم عمل به نحوی است که باعث می شود مواد تعمیری به هنگام گیرش و سخت شدن (عمل آوری (CURINGانبساط پیدا کرده و با عمل انقباض مخالفت و آن را خنثی نماید
دسته بندی عمران
بازدید ها 0
فرمت فایل doc
حجم فایل 43 کیلو بایت
تعداد صفحات فایل 39
بتن، ملات، و دوغابهای منبسط شونده

فروشنده فایل

کد کاربری 2106
کاربر

بتن، ملات، و دوغابهای منبسط شونده

بتن، ملات، و دوغابهای منبسط شونده

(EXPANDING MORTARS, GROUTS & CONCRETES)

دلیل عمده استفاده از بتن، ملات و دوغابهای منبسط شونده آن است که بتوان بر مشکلات انقباض (جمع شدگی) که معمولاً در به کارگیری مواد با سیمان معمولی مشاهده می شود فائق آمد. مکانیزم عمل به نحوی است که باعث می شود مواد تعمیری به هنگام گیرش و سخت شدن (عمل آوری (CURINGانبساط پیدا کرده و با عمل انقباض مخالفت و آن را خنثی نماید.

3-7 بتن و ملات دارای الیاف مصنوعی

(FIBRE REINFORCED CONCRETE & MORTAR)

اساساً افزودن الیاف مصنوعی به بتن یا ملات به سه منظور اصلی افزایش مقاومت کششی، افزایش مقاومت خمشی و افزایش در مقابل ضربات ناگهانی (IMPACT RESISTANCE) صورت می گیرد.

به طور کلی دو گروه اصلی از الیاف مصنوعی وجود دارند که برای منظورهای فوق مورد استفاده قرار می گیرند. مدلهای گروهی از این الیاف مصنوعی پایینتر از مدلهای بتن یا ملات می باشد؛ مانند نایلون (NYLON) و پلی پروپیلن (POLYPROPYLENE). در حالیکه مدولهای گروه دوم بالاتر از مدولهای بتن یا ملات هستند؛ مانند شیشه (GLASS)، استیل و کربن. از بتن یا ملات مسلح به الیاف مصنوعی به طور موفقیت آمیزی به عنوان لایه های نازک روکشی (OVERLAYS) روی جاده ها، خیابانها و باندهای فرودگاه (RUNWAYS) استفاده شده است. همچنین از این سیستم می توان در مکانهایی که خلأزایی(CAVITATION) و فرسایش (EROSION) مشکلاتی را باعث شده است (مانند روی سرریزهای سدها) و سایر مراحل خاص کمک گرفت. روشهایی نیز ابداع شده است که با به کارگیری آنها می توان از مخلوطهای واجد الیاف مصنوعی، در سیستمهای بتن پاشی استفاده نمود.

اخیراً گزارش شده است که افزایش الیاف مصنوعی در سیستمهای باعث ازدیاد قدرت چسبندگی لایه های تعمیری به بتن مادر می گردد. البته سیستمهای انحصاری نیز وجود دارند که برای تعمیرات بتن به کار می روند و در آنها علاوه بر پلیمرها، الیاف مصنوعی نیز دیده می شود. علیرغم موفقیتهایی که تا امروز به دست آمده، ممکن است پیشنهاد این سیستم به عنوان یک ماده تعمیری، ناپخته به نظر برسد چرا که مسأله دوام و پایداری آن در دراز مدت، در مرحله آزمون و بررسی و مطالعه قرار دارد. نکته ای که باید مورد توجه خاص قرار گیرد، نحوه مخلوط و پخش شدن (DISPERSION) الیاف مصنوعی در سیستم است. بارها مشاهده گردیده که به هنگام مخلوط نمودن الیاف با سایر مواد بتنی یا ملات (سیمان- سنگدانه- آب و…)، الیاف مصنوعی تمایل به جمع شدن در یک جا داشته یا در جهات مشخصی قرار می گیرند. که این امر توزیع برابر و یکنواخت الیاف را با اشکال مواجه می سازد.


3-8 لاتکس

(LATICES)

در حال حاضر باور بر این است که بتن یا ملاتی که دارای افزودنیهای لاتکسی (LATEX) می باشد، برای مرمت سازه های بتنی آسیب دیده بسیار مفید واقع می شود. اصطلاحاتی که برای این گونه مواد تعمیری به کار برده می شود، به شرح زیر است:

بتن لاتکسی (LATEX CONCRETE)

بتن اصلاح شده لاتکسی (LATEX MODIFIED CONCRETE)

و اخیراً بتن اصلاح شده پلیمری (POLYMER MODIFIED CONCRETE)

توضیح ضروری این است که نباید سیستمهای یاد شده را با بتن پلیمری (POLY. CONC.) اشتباه نمود. چون در بتن پلیمری تنها عامل گیرش (BINDER) خود پلیمر می باشد در صورتی که در بتن اصلاح شده پلیمری، سیمان که دارای خاصیت چسبندگی و گیرش می باشد نیز به کار رفته است.

به طور کلی، در مقایسه با بتن و ملات ساخته شده از سیمان پرتلند معمولی، بتن و ملات اصلاح شده پلیمری دارای خواص و مشخصات ویژه ای می باشند. این مشخصات را می توان به صورت زیر خلاصه نمود:

(الف) در صورت نیاز می توان آن را به صورت لایه های نازک و لبه پری (FEATHER- EDGED) به کار برد.

(ب) از قدرت چسبندگی بیشتر به بتن مادری که دارای مقاومت و مرغوبیت کافی باشد، برخوردار است.

(پ) به علت اینکه این گونه مواد خود حالت نگهدارندهء آب (WATER RETENTIVE) دارند، عامل عمل آورنده و یا پوششهای عمل آورنده از اهمیت چندانی برخوردار نیستند، البته بایستی از خشک شدن در شرایط تابش مستقیم آفتاب و باد اجتناب گردد.

(ت) دارای مقاومت کششی بیشتری می باشند.

(ث) دارای حالت ارتجاعی و نرمش بیشتری می باشند.

(ج) از دوام و پایایی بهتری برخوردارند.

با اینکه قیمت بتن و ملات اصلاح شده پلیمری از قیمت بتن و ملات با سیمان معمولی، بیشتر است ولی آنها بسیار ارزانتر از مواد اپوکسی به شمار می آیند. باید توجه داشت که وقتی پلیمر به مخلوط بتن یا ملات افزوده می گردد، به کارگیری افزودنیهای دیگر بایستی با دقت بیشتری صورت گیرد. چرا که ممکن است سازگاری (COMPATIBILITY) لازم بین آنها موجود نبوده و اختلالاتی را شاهد باشیم. نکته قابل ذکر اینکه جا به جا کردن و پرداخت سطح نهایی بتن و ملات اصلاح شده پلیمری مشکلتر از مواردی است که در آنها از بتن و ملات با سیمان معمولی استفاده شده است.

از جمله پلیمرهای لاتکسی که در صنعت بتن کاربرد بیشتری دارند، می توان استیرن بوتادین(STYRENE BUTADIENE)، ساران(SARAN) اکلریک (ACRYLIC) و پلی وینیل استات (POLYVINYL ACETATE) را نام برد. این پلیمرها به صورت پودر و یا مایع به مخلوط بتن یا ملات اضافه می گردند. گفته می شود که نتایج بهینه موقعی حاصل می گردد که سیستم به مدت 3-1 روز به صورت خیس، عمل آمده و سپس در هوای آزاد قرار گیرد. صاحبنظران بر این عقیده هستند که حداقل بخشی از بهبود مکانیکی و پایایی یا دوام حاصل از به کارگیری این گونه سیستمها، به دلیل کاستن از درجه تخلخلی است که در نتیجهء وجود پلیمر در سیستم پدید می آید. همچنین ادعا بر این است که یکی از مهمترین مشخصه های بتن یا ملات اصلاح شده پلیمری، به عنوان دو مادهء تعمیری در سازه های بتنی، قدرت چسبندگی خوب آنها به بتن قدیم (مادر) می باشد.

3-9 سایر مواد پوششی

(OTHER COATING MATERIALS)

علاوه بر موادی که مانند بنتونیت، سیستمهای قیری و رزینی به عنوان مادهء پوششی مورد استفاده قرار می گیرند، مواد دیگری نیز از قبیل روغنLINSEED ، سیلیکونها (SILICONES) سیلانها (SILANES) موجود می باشند.

3-10 سیمانهای مخصوص

(SPECIAL CEMENTS)

سیمانهای مخصوصی از قبیل سیمان با آلومینای بالا (HIGH ALUMINA) و سیمانهای فسفات منیزیوم (MAGNESIUM PHOSPHATE) وجود دارند که می توان از آنها برای کارهای تعمیرات بتنی استفاده نمود. عمده ترین امتیازات این سیمانها، گیرش سریع و مقاومت بالای آنها در زمان کوتاه می باشد. همچنین این سیمانها در مقابل بعضی از اسیدها، روغنها و چربیها، آب دریا، مواد شکری و سولفاتها از خود مقاومت و پایایی بالایی نشان می دهند.

3 - 11 مواد تعمیری زیر آبی

(UNDER WATER REPAIR MATERIALS)

به طور کلی می توان موادی را که برای تعمیرات زیر آبی به کار می روند، به دو گروه سیمانی (CEMENTITIOUS) و رزینی (RESINOUS) تقسیم نمود. با توجه به اندازه و وسعت محل تعمیر، ممکن است این طبقه بندی به چند گروه دیگر از قبیل تعمیرات ترکها (CRACK REPAIRS) و تعمیرات قطعه ای یا سطحی (PATCH REPAIRS) نیز تقسیم گردد. بررسی مدارک موجود نشان می دهد با وجود آن که از سیستهای رزینی هم برای تعمیر و تزریق ترکها وهم برای تعمیرات سطحی (PATCH) استفاده شده است، سیستهای سیمانی هنوز برای تزریق ترکها به کار گرفته نشده اند.

در میان سیستمهای رزینی به نظر می رسد که اکثراً اپوکسیها برای انجام تعمیرات بتنی زیر آبی مورد استفاده قرار گرفته اند و دلیل این امر را می توان عملکرد و ویژگیهای بهتر سیستمهای اپوکسی، در مقایسه با سایر سیتمهای موجود دانست. از جلمه ویژگیهای اپوکسیها که باعث می گردد آنها برای تعمیرات زیر آبی مورد توجه و درخواست قرار گیرند می توان مقاومت بالا، قدرت جمع شدگی (SHRINKAGE) کم در مقابل رطوبت را نام برد. از آنجا که شرح سیستمهای رزینی در بخش 3-5 (رزینها-RESINS ) آمده است، فقط به شرح و بررسی کامل سیستهای سیمانی که برای تعمیرات بتنی در زیر آب به کار گرفته می شوند، می پردازیم.

3-11-1 مواد سیمانی برای تعمیرات زیر آبی

(CEMENTITIOUS MATERIALS FOR UNDER WATER REPAIRS)

بر عکس دوغابهای (GROUTS) رزینی، دوغابهای سیمانی کاملاً برای مهندسین و دست اندر کاران آشنا و شناخته شده می باشند. ماده چسباننده و گیرش (BINDER) دوغابهای سیمانی، سیمان پرتلند معمولی است که به دلیل در دسترس بودن، قیمت پایین، سهولت مصرف و همچنین به واسطهء شناخته شدن آن در صنعت بتن، ملات و دوغاب ساخته شده با سیمان پرتلند معمولی برای تعمیرات داخل آب چندان مناسب نیستند. دلایل آن و اقداماتی که می توان برای غلبه بر این نارساییها و همچنین سیستمهای تعمیراتی ساخته شده با سیمان معمولی به کار برد، در این بخش به تفصیل شرح داده شده اند.

3-11-1-1 ویژگیهای آب اندازی

(HIGH BLEED CHARACTERISTICS)

پس از قرار گرفتن مخلوط بتن یا ملات، آب آن به خاطر پایین بودن وزن مخصوصش، از دانه ها جدا شده و نزدیک سطح جمع می گردد. این فرآیند (PROCESS) که نوعی جداشدگی (SEGREGATION) است به نام آب انداختن (BLEEDING) خوانده می شود. از آنجا که آب انداختن (BLEEDING) برای تعمیرات بتنی مخرب می باشد، بایستی آن را کنترل نمود. یک راه حل آن است که آب مخلوط را کم می کنیم که در این صورت روانی مخلوط تحت تأثیر قرار می گیرد. راه دیگر آن است که از افزودنیها کمک گرفته شود.

ماده افزودنی که مورد استفاده قرار می گیرد بایستی طوری انتخاب شود که ضمن کم نمودن آب مورد نیاز مخلوط، روانی آن را حفظ نماید. برای این منظور از روان کننده ها (PLASTICIZERS) استفاده می شود که به واسطهء وارد نمودن هوا به درون مخلوط، روانی مخلوط را بهبود می بخشد بدون آنکه نیازی به آب بیشتر باشد. همچنین می توان آب انداختن (BLEEDING) را با به کارگیری پودر آلومینیوم، یک ماده منبسط شونده، کلرید کلسیم (cac12)، یک ماده شتاب دهنده با C3A (تری کلسیم آلومینات) بالا و ذرات ریزتر سیمان کم نمود.

3-11-1-2 زمان گیرش طولانی

(PROLONGED SETTING TIME)

زمان لازم برای سخت شدن و گیرش مخلوط سیمان پرتلند معمولی، خصوصاً در حرارتهای پایین بسیار طولانی بوده و حدود چند روز به طول می انجامد. گرچه ممکن است این خاصیت، موقع انجام تعمیرات، مزیتی به شمار آید، ولی پس از اینکه بتن در جای خود قرار گرفت این مزیت تبدیل به یک عیب می شود. از انجا که زمان گیرش به حرارت وابسته است، اهل فن دریافته اند که می توان با انجام اقداماتی حتی در دماهای زیر 50 درجه سانتیگراد نیز به محض قرار دادن بتن، عمل گیرش آغاز گردد.

3-11-1-3 شسته شدن

(WASHOUT)

اگر سیمان پرتلند معمولی در تماس با آب قرار گیرد (مثلاً آب دریا)، به علت تمایل آن برای مخلوط شدن با آب بیشتر، در آب پخش و در نتیجه مواد متشکله (CONSTITUENTS) خود را از دست می دهد. از آنجا که در تعمیرات بتنی زیر آب، بایستی مواد تعمیری با آب تماس پیدا کرده و آن را جا به جا نماید، عمل شسته شدن (WASHOUT) می تواند اثرات منفی بسیار جدی بر جای بگذارد. جهت غلبه براین مشکل، از افزودنیهایی با مواد شیمیایی با بنیان (BASE) سلولزی (CELLULOSE) و یا پلی اتیلنی (POLYETHYLENE) که به آب مخلوط اضافه می گردد، کمک گرفته می شود. در واقع ماده افزودنی، تولید محلول کلوئیدی (COLLOID) می نماید که با تشکیل مانع یا پوسته ای با جریان الکتریکی ELECTRO STATIC، در روی سطح، از مخلوط شدن بیشتر آب جلوگیری می کند.


بتن و انواع آن

بتن که میزان تولید آن بالغ بر 83 بیلیون مترمکعب در سال تخمین زده می شود، به علت دارا بودن خواص و ویژگی های ممتاز و نیز در دسترس بودن مصالح آن، پس از آب، پرمصرف ترین ماده روی زمین به شمار می رود بتن در همه جا موجود است و در یکصد سال اخیر، استفاده از آن در ساخت بناهای مسکونی و اداری، پیاده روها، راه ها و جاده ها و نیز انواع مختلف ساختمان های فنی عمل
دسته بندی عمران
بازدید ها 0
فرمت فایل doc
حجم فایل 50 کیلو بایت
تعداد صفحات فایل 62
بتن و انواع آن

فروشنده فایل

کد کاربری 2106
کاربر

بتن و انواع آن

بتن

سنگ روان در خدمت معماری نوین

بتن که میزان تولید آن بالغ بر 8/3 بیلیون مترمکعب در سال تخمین زده می شود، به علت دارا بودن خواص و ویژگی های ممتاز و نیز در دسترس بودن مصالح آن، پس از آب، پرمصرف ترین ماده روی زمین به شمار می رود. بتن در همه جا موجود است و در یکصد سال اخیر، استفاده از آن در ساخت بناهای مسکونی و اداری، پیاده روها، راه ها و جاده ها و نیز انواع مختلف ساختمان های فنی عملکردی از قبیل کارخانه ها، پارکینگ ها، متروها، فرودگاه ها، پل ها، سدها، سیلوها، سازه های دریایی، رآکتورهای اتمی و سازه های مقاوم در برابر انفجارات و زلزله، مقبولیتی همگانی پیدا کرده است.
چنانچه از عنوان این نوشتار برمی آید، بتن یک ماده متناقض است. بتن با اینکه تداعی کننده مفهوم سختی است، لیکن در ابتدای فرآیند اختلاط مواد تشکیل دهنده اش، نرم و روان است؛ اگرچه بتن، بر اساس تعریفی که از آن سراغ داریم، یک ماده پیوندی و چندرگه است که از اختلاط سیمان، آب، ماسه و مصالح دانه ای معدنی از قبیل شن یا سنگریزه به دست می آید، اما معمولا به عنوان یک ماده یکپارچه و دارای شخصیت مستقل در نظر گرفته می شود. بتن شکل ذاتی و طبیعی بخصوصی ندارد و از این رو باید با استفاده از قالب بندی به شکل معینی درآورده شود؛ یعنی شکل و بافت نهایی بتن را قالبی که بتن به درون آن ریخته می شود، تعیین می کند.
بتن می تواند هر رنگ، بافت و طرحی را به خود بگیرد، از این رو شاید بتوان آن را به یک آفتاب پرست تشبیه کرد. رنگ بتن اغلب خاکستری ست، اما از طریق انتخاب سیمان و مصالح دانه ای مناسب یا با استفاده از رنگدانه های شیمیایی می توان به آسانی آن را در رنگ های سفید، قهوه ای یا حتی قرمز روشن تولید کرد. بتن بسته به قالب مورد استفاده در تولید آن، می تواند صاف و ساده یا دارای طرح های دقیق و پیچیده باشد؛ بتن می تواند همچون شیشه صاف باشد یا همچون صخره زمخت و ناصاف. بتن ممکن است بدون پرداخت رها شده یا همچون یک تندیس به دقت روی آن کار شود. در واقع، بتن، با توجه به ویژگی های خاص سطح آن، یک فرآورده واحد نیست، بلکه طیف گسترده ای از مصالح را دربرمی گیرد که از نظر بافت، رنگ و بیان معمارانه از قابلیت های بی شماری برخوردار است.
ترکیب مقاومت فشاری سنگ و مقاومت کششی فولاد در بتن مسلح، سازه های بتنی را قادر به تحمل وزن بسیار زیاد و پوشش دهانه های بزرگ می سازد. از آنجایی که عناصر تشکیل دهنده سازه بتن مسلح می توانند بصورت یک شبکه پیوسته و یکپارچه، به هم بافته شوند، استفاده از بتن مسلح در طراحی سازه، آن را از قابلیت انعطاف پذیری بی نظیری برخوردار می کند. معماران و مهندسان از این ویژگی برای خلق عناصر ساختمانی مختلف، از صفحات بتنی یکپارچه گرفته تا قاب های سازه ای سه بعدی و کنسول های عظیم و مهیب، بهره می گیرند.
بررسی تاریخی کاربرد بتن در معماری نشان می دهد که بتن توسط معماران رومی و صدر مسیحیت مورد استفاده قرار می گرفت، اما در قرون وسطی و رنسانس اغلب بی استفاده ماند، تا آنکه در نیمه دوم قرن نوزدهم بار دیگر، عمدتا برای مصارف معمولی، مورد توجه قرار گرفت، بویژه در مواردی که ساخت ارزان، قابلیت ایجاد دهانه های عریض و نسوز بودن، ضرورت به کارگیری آن را ایجاب می کرد. مسلح کردن بتن نیز که برای این کار میلگردهای فولادی را به منظور استحکام بیشتر در میان بتن قرار می دادند، به دهه 1870 باز می گردد. معماران قرن نوزدهم بعضا به قابلیت های بتن مسلح خیلی اطمینان نداشتند و نسبت به آن بدگمان بودند. بتن در آن زمان یک ماده خیلی جدید به شمار می رفت و ویژگی های آن برای معماران بخوبی قابل درک نبود، زیرا فاقد یک فرم ذاتی و پایدار بود. جالب آنکه این دقیقا همان خصوصیتی است که بتن را برای بسیاری از معماران امروز به وسیله ای امیدوارکننده جهت تحقق ایده هایشان تبدیل می کند.
پدیده بتن در چند سال آخر قرن نوزدهم که معماران سعی کردند سبکی مبتنی بر این مصالح بیابند، آشکارتر شد. در حالی که یکی از طراحان احتمالا چنین استدلال می کرد که ویژگی انعطاف پذیری بتن آن را به ماده ای مناسب برای بیان گرایی هنری در معماری تبدیل می کند، دیگری ممکن بود بر نقش روش قاب و قاب بندی تکیه کند و مدعی ارزش گذاری بر نمونه های پیشین گوتیک یا حتی شیوه های معماری فولاد و شیشه شود. نظریات مشابه مختلفی نیز با توجه به جنبه بیرونی بتن ابراز می شد، بدین معنا که یک معمار، بتن را ماده ای معمولی و پیش پاافتاده و نیازمند پوشانیده شدن با کاشی ها و روکارهای آجری می دانست و دیگری از زیبایی ذاتی آن دم می زد که به همین دلیل باید نمایان می ماند. استفاده گسترده و فراگیر از بتن مسلح در معماری حدودا به نیمه اول قرن بیستم باز می گردد. این ماده جدید به دلیل برخورداری از قابلیت استفاده در بناهای مختلف و نیز فرم پذیری قابل توجهش، در آن زمان در مقیاس وسیع مورد استفاده قرار گرفت و با سرعت شگفت آوری تاثیرات خود را در معماری بر جای گذاشت و بین سالهای 1910 و 1920، تقریبا به علامت مشخصه معماری جدید تبدیل شد. شاید از بسیاری جهات بتوان گفت خردگرایی و بتن مسلح دو عنصری بودند که سرانجام در دوره افتخارآمیز معماری مدرن در دهه 1920 در یکدیگر ادغام شدند؛ معماران خردگرای این دهه که بتن را به لحاظ برآورده کردن نیازهای اساسی چون ارزانی، یکسان سازی، نورپردازی کافی، تهویه گسترده و فضاهای داخلی انعطاف پذیر و نامحدود، ماده ای مناسب یافته بودند، در سطح وسیع آن را مورد استفاده قرار دادند.
آگوست پره مهندس معمار فرانسوی، نخستین کسی ست که بتن مسلح را به عنوان وسیله ای برای بیان مقاصد معماری شناخت و به کار برد. آپارتمان های مسکونی که او با استفاده از قابلیت های هنری بتن مسلح ساخت، منزلت بتن را در عالم معماری افزایش داد. فرانک لویدرایت نیز یکی از معماران برجسته آمریکایی است که در پروژه هایش از قابلیت های این ماده جدید استفاده فراوانی کرده است. ارزانی بتن و قابلیت ایجاد دهانه های عریض با استفاده از آن، باعث روی آوردن او به این ماده شد. علاوه بر این، او با بتن براحتی می توانست به ایده های فضایی خود جامه عمل بپوشاند. رایت به خاطر تاکید هنری و حرفه ای اش بر ماهیت مصالح، سطح بتن را در اغلب کارهایش عاری از پوشش باقی می گذاشت. پتانسیل تقریبا نامحدود بتن جهت خلق فرم ها و سطوح انتزاعی، برخورداری از قابلیت تطابق با شرایط و کارکردهای مختلف و نیز داشتن استحکام بالا، بتن را در حال حاضر به یکی از مصالح پرطرفدار و مورد توجه در میان بسیاری از معماران و مهندسان تبدیل کرده است. بتن به خاطر داشتن خاصیت انعطاف پذیری بالا، آزادی عمل قابل توجهی در اختیار طراحان و معماران قرار می دهد. بتن، همانند خاک رس در دستان یک تندیس گر، برای معماران امکان خلق ساختمان هایی را فراهم می کند که به طور منحصر به فردی گیرا، جالب توجه و از نظر هندسی متهورانه است. فرم ها و ترکیباتی که ساختن آنها پیش از ابداع بتن مسلح، با استفاده از سایر مصالح متداول دشوار یا غیرممکن بود، با استفاده از بتن مسلح اغلب به آسانی قابل دستیابی هستند. به جرات می توان گفت که بدون استفاده از بتن، اجرای برخی از زیباترین و نوآورانه ترین آثار معماری معاصر جهان هرگز قابل تصور و تحقق نبود.
امروزه بتن با گذشت سالها از پیدایش و کاربرد آن به صورت کنونی، دستخوش تحولات و پیشرفت های شگرفی شده است. از زمان شروع استفاده گسترده از بتن مسلح در ساخت وسازها (در بیش از یک قرن قبل)، برخی انگاره های بنیادی درباره خواص این ماده و محدودیت های آن تاکنون با چالش و تردید جدی مواجه نشده بودند، اما در سالهای اخیر، با توجه به پیشرفت علم و تکنولوژی، تحقیقات متعددی روی خواص بتن صورت گرفته و در حال حاضر طیف متنوعی از فرآورده های آن ابداع و به بازار عرضه شده اند که این قبیل انگاره ها را به چالش کشیده و آزادی بیشتری جهت تجربه و ابداع در اختیار معماران و مهندسان قرار داده اند. بر این اساس است که در سالهای اخیر، معماران مختلف در پروژه هایشان برخی از انگاره های غالب درباره فرم معماری و فناوری بتن را به چالش کشیده و رویکرد های جدیدی را در هر دو زمینه ارائه کرده اند. بسیاری از معماران نیز با کاربرد هوشمندانه بتن، از آن به عنوان ابزاری جهت خلق زیبایی در آثارشان بهره جسته اند. البته با توجه به پیشرفت های سریع و روزافزون صنعت بتن در سالهای اخیر، به نظر می رسد در سالهای آینده شاهد استفاده گسترده تری از قابلیت های بتن در عرصه معماری خواهیم بود

فوق روان کننده و کاهش دهنده شدید آب بتن

فوق روان کننده بر اساس الزامات استاندارد ASTM-C494 Types A& F ساخته می شوند این مواد را بعنوان روانسازهای بتن و فوق روانسازهای بتن مصرف کنند و براساس استاندارد 2930 ایران ساخته می شوند.
گفتنی است این مواد ممکن است توسط تولید کنندگان بتن آماده و قطعات پیش ساخته بتنی برای تولید کار آمد و مقرون به صرفه زمانی که شکل پذیری زیاد بتن و افزایش مقاومت اولیه و نهایی مد نظر است ، مورداستفاده قرار گیرند .
باید اشاره کرد این محصولات در کاهش آب بسیار موثر بوده تا جایی که وقتی به عنوان یک کاهش آب دهنده شدید آب بتن مورد استفاده قرار می گیرند در مقادیر متعارف می تواند به سادگی بین 20%-18% کاهش در میزان آب مصرفی ایجاد نماید ودر مواردی در بتنهای خاص و با استفاده از مقادیر متعارف، کاهش آب تا حداکثر 40% نیز ممکن شده است .
همچنین خاصیت روان کنندگی زیاد این مواد سبب می شود بتنی با اسلامپ زیاد، روان و خود تراز شونده حاصل گردد . کارآیی این بتن نسبت به بتن معمولی بسیار شگرف و قابل تمایز است . بطوریکه بتن با حداقل عملیات و ویبره کردن یا حتی به خودی خود ، در حالیکه مصرف آب آن به حداقل رسیده در قالب جای می گیرد .
شایان ذکر است از ترکیب خواص فوق روان کنندگی و کاهش دهندگی شدید آب بتن مزایای زیر حاصل می گردد :
مقاومت اولیه زیاد امکان تسریع در عملیات بازکردن قالبها و باعث استفاده مقرون به صرفه تر از قالبهامی شود، مقاومت اولیه و نهایی زیاد برای بتن پر مقاومت و مقرون به صرفه، افزایش کار آیی باعث کاهش هزینه های استهلاک و سختی کار می گردد و افزایش اسلامپ ،امکان تولید بتنی خود تراز شونده رابوجودمی آورد، مقاومت نهایی بالاتر به مهندسین محاسب قدرت انعطاف بیشتری را در ارائه یک طرح بهینه اقتصادی ارائه می دهد .
خاصیت فوق العاده روان کنندگی باعث تسهیل در پمپ نمودن و کاهش نیاز به ویبره کردن بتن می گردد .

نسبت آب به سیمان کاهش یافته ، دوام و تراکم بیشتر بتن را با کاهش نفوذپذیری بتن باعث می شود

آرماتورهای غیر فولادی در بتن

در سال های اخیر استفاده محدودی از آرماتورهای غیر فلزی آغاز گشته است هر چند تحقیقات بر روی کاربرد وسیعتر آنها و عملکرد دراز مدت این نوع آرماتورها ادامه دارد این آرماتورها که معروف به آرماتورهای با الیاف پلاستیکی (FRP) هستند از الیاف مختلفی چون الیاف شیشه ای (GFRP) الیاف آرامیدی (Afrp) والیاف کربنی (CFRP) در یک رزین چسباننده تشکیل شده اند.
خاصیت عمده این آرماتورها که سبب کار برد آنها شده است مقاومت در برابر خوردگی آنهاست که می تواند در محیط های بسیار خورنده دوام دراز مدتی داشته باشند. علاوه بر این مقاومت بالا، مقاومت به خستگی بالا، ظرفیت بالای تغییر شکل ارتجاعی، مقاومت الکتریکی زیاد و هدایت مغناطیسی پایین و کم این مواد از مزایای آنها شمرده می شود. البته این مواد معایبی چون کرنش گسیختگی کم و شکننده بودن و خزش زیاد و تفاوت قابل ملاحظه ضریب انبساط حرارتی آنها در مقایسه با بتن را به همراه دارند.
اخیراً از الیاف مختلف شبکه هایی بافته شده و به صورت یک شبکه آرماتور در سطح بتن برای کنترل ترک و کم کردن عرض آن و همچنین در دیوارهای نمای بتنی ازآن استفاده می کنند. تحقیقات روی کاربرد صفحات الیافی به جای صفحات فولادی برای تقویت قطعات خمشی و تیرها و دال ها به ویژه در پل ها ادامه دارد. این صفحات با رزین های اپوکسی به نواحی کششی از خارج اتصال داده می شود. کاربرد صفحات با الیاف کربنی برای این تقویت بیشتر رایج گشته و در چندین پل در ژاپن و در بعضی کشورهای اروپایی از آن استفاده شده است.

بتن ایران ، یک پنجاهم استاندارد

بگفته رییس مرکز تحقیقات ساختمان و مسکن در کشور ما عمر قطعات بتن از 5 تا 10 سال تجاوز نمی کند. در حالی که این قطعات در دنیا بیش از 500 تا هزار سال دوام دارند بتن از جمله مصالح ساختمانی است که در چند سال اخیر به دلیل میزان بالای اهمیت آن در فرآیند ساخت و ساز مشمول استاندارد اجباری شده است. اما اینکه این استاندارد تا چه حد اجرا می‌شود به اعتقاد بسیاری از دست‌اندرکاران این حوزه رضایت‌بخش نیست.
دکتر قاسم حیدری‌نژاد رییس مرکز تحقیقات ساختمان و مسکن در خصوص وضعیت بتن در کشور گفت: بتن به عنوان پرمصرف‌ترین مصالح ساختمانی در کشور به صورت گسترده‌ای استفاده می‌شود و به همین دلیل حضور دستگاه‌های نظارتی باید در آن جدی‌تر باشد.
وی افزود: البته موسسه استاندارد برای اعمال این استاندارد تلاش می‌کند اما به دلیل گسترده بودن حوزه توزیع و استفاده از بتن این نظارت پررنگ و محسوس نیست.
حیدری‌نژاد با بیان اینکه در کشور ما سالانه حدود 80 میلیون مترمکعب بتن مصرف می‌شود،‌ گفت: تولید سیمان در رابطه با تهیه بتن کافی است و در حوزه تولید سیمان تقریبا به مرز خودکفایی رسیده ایم. گر چه این موضوع در مواقعی که اندکی افزایش و کاهش این محصول به وجود می‌آید، منجر به شکل گرفتن بازار سیاه سیمان می‌شود.
رییس مرکز تحقیقات ساختمان و مسکن با بیان اینکه تولید سیمان به دلیل استفاده فراوان از انرژی و آلوده کردن محیط‌زیست، گران تمام می‌شود، گفت: متاسفانه سیمان در کشور ما به شکل نامناسب مصرف می‌شود و مردم گاه برای کارهای بی‌ارزش از سیمان استفاده می کنند.
وی افزود: با استفاده از پوزولان ها یا افزودنی‌های پرحجم که تا میزان 70 درصد می‌توان به بتن اضافه کرد باید مصرف سیمان را پایین آورد.
حیدری‌نژاد گفت: در کشور ما عرف است که با مصرف سیمان بیشتر در بتن سعی در مقاوم کردن محصول دارند.‌ در حالی که در دنیا برای این منظور از نسبت‌های استاندارد بهره می‌گیرند.
وی با اشاره به اینکه امروز در دنیا علاوه بر مقاومت بر دوام بتن هم بسیار تاکید دارند، گفت: به طور مثال جداول بتنی کنار خیابان را در نظر بگیرید. در کشور ما به دلیل عمر کوتاه این جدول ها، دایم در حال تعویض آن هستند. عمرقطعات بتنی در کشور ما حدود 5 تا 10 سال است، در حالی که عمر مفید یک سازه بتنی در دنیا بین 500 تا هزار سال است.
حیدری‌نژاد، با بیان اینکه 2 تا 3 مشکل فرعی بتن در حال حاضر در کشور ما تبدیل به مشکل اصلی شده است، گفت: تهیه بتن در کارخانه‌ای باید صورت گیرد که امکانات و نیروی کار ماهر در اختیار داشته باشد. ضمن اینکه استفاده از سیمان تیپ‌های مختلف در آماده کردن بتن هم از جمله آن موارد فرعی است که به دلیل رعایت نشدن محصول غیراستاندارد می‌‌شود.
حمل بتن آماده از مراکز تولید به پای کار هم از مشکلات عمده این صنعت محسوب می‌شود. از آنجایی که کارخانه‌های فراوری بتن دور از شهر قرار می‌گیرند سیستم حمل و نقل بتن و رعایت استاندارد در ماشین‌آلات حمل و نقل از اهمیت فوق‌العاده‌‌ای برخوردار است.
حیدری نژاد در این خصوص می گوید: اما متاسفانه به همین دلایل بتن بعد از رسیدن به مقصد از حالت استاندارد خارج می شود و کمی سفت‌تر می‌شود. در این مواقع کارگران ساختمانی به بتن آب اضافه می کنند که این کار از نظر ظاهری بتن را به شکل اولیه‌اش برمی‌گرداند، اما بتن از حالت استاندارد خارج می شود و کیفیت خود را از دست می دهد.
رییس مرکز تحقیقات ساختمان و مسکن با اشاره به تاثیر نیروی کار ماهر در صنعت بتن در توصیف وضعیت کشور به لحاظ رعایت موازین و استانداردهای علمی در تولید بتن آماده گفت: در رابطه با صنعت بتن آماده در مرحله گذار قرار داریم. یعنی از خواب بیدار شده‌ایم اما کاملا هوشیار نیستیم.به همین دلیل هیچ آمار و ارقامی در مورد میزان تولید و استفاده استاندارد و غیراستاندارد هم در این صنعت در دست ما نیست.
وی با بیان اینکه مسولان از وضع موجود صنعت بتن در کشور راضی و خشنود نیستند، گفت:‌ فکر می‌کنم ظرف یک دوره 3 تا 5 ساله وضعیت بتن بهتر از حال حاضر شود. چون حرکت‌های مثبتی در این زمینه شکل گرفته است.
وی برگزاری روز بتن را یکی از حرکت‌های مثبت در این خصوص دانست و گفت: این همایش‌ در راستای آماده‌سازی نیروهای جوان متخصص و تشویق شرکت‌های موفق در تولید بتن می‌تواند در درازمدت تاثیرگذار باشد.

تولید بتن سبک از پسمانده های هسته ای برای کاهش تشعشعات

محققان و پژوهشگران ایرانی موفق شدند از پسمانده های هسته ای بتن سبک تولید کنند.
طبق گزارش دبیرخانه نخستین همایش سبک سازی ساختمان به نقل از حمیدرضا وثوقی فر ، عضو انجمن مهندسان عمران امریکا ، با توجه به حرکت کشورهای جهان برای دستیابی به تکنولوژی صلح آمیز هسته ای برای تولید انرژی مفید، پسمانده های هسته ای حاصل از فعالیت های هسته ای نیز افزایش می یابد.
وی افزود: محققان و پژوهشگران ایرانی تحقیقات خودشان را بر روی کاهش اثرات منفی پسمانده های هسته ای متمرکز کرده و موفق شدند با همکاری یکی از دانشگاه های صنعتی انگلستان بتن های سبک را از پسماند ه های هسته ای تولید کنند.
وی اظهار داشت: گروه محققان ایرانی با کاربرد پسمانده های هسته ای در ساخت بتن خاص با مقاومت های مناسب دریافتند ترکیبات هیدراتاسیون وسایر واکنش های شیمیایی بتن تا حدود قابل توجهی از تشعشعات این مواد می کاهد و راهکار بسیار مناسبی برای استفاده مجدد از پسمانده های هسته ای است.
دبیر اولین همایش زلزله وسبک سازی ساختمان گفت: نتایج تحقیقات موید این مطلب است که این مطلب می تواند تشعشعات را تا حدود 60 درصد کاهش دهد که برآیند این تحقیق می توان در ارتباط با کاهش خطر آفرینی پسماند ه های دیگر حاصل از فعالیت های شیمیایی مواد وغیره استفاده کرد.
وی کاربرد بتن سبک تولیدی از پسمانده های هسته ای را با توجه به ویژگی های خاص آن در ساخت دیوارهای برثی و تیرهای فرعی در بخش های مختلف سازه های عمرانی عنوان کرد.
مهندس وثوقی فر اشاره کرد: با این حال با وجود محقق شدن تمامی تحقیقات صورت گرفته در این زمینه می توان امیدوار بود که محیط زیستی عاری از هر نوع آلودگی هسته ای را در کنار توسعه این صنایع داشته باشیم
به گفته وی، این نوع بتن در کارگاه تخصصی اولین همایش زلزله و سبک سازی ساختمان و با حضور متخصصان ایرانی و خارجی تولید می شود.
شایان ذکر است این همایش در روز ششم و هفتم مهر ماه سال جاری در دانشگاه قم برگزار می شود


بتن سبک

وزن مخصوص فضایی بتن سبک بستگی به روش ساخت، مقدار و انواع اجزای متشکله آن داردتمام بتن‌های سبک، وزن مخصوص کم خود را مدیون وجود هوا در ساختمان داخلیشان هستند بتن سبک، با وزن مخصوص 300 تا 1000 کیلوگرم در متر مکعب را برای سیستمهای عایقبندی و همچنین به عنوان پرکننده و همچنین برای تحمل بارها می‌توان مورد استفاده قرار داد
دسته بندی عمران
بازدید ها 0
فرمت فایل doc
حجم فایل 479 کیلو بایت
تعداد صفحات فایل 150
بتن سبک

فروشنده فایل

کد کاربری 2106
کاربر

بتن سبک

مقدمه

وزن مخصوص فضایی بتن سبک بستگی به روش ساخت، مقدار و انواع اجزای متشکله آن دارد.تمام بتن‌های سبک، وزن مخصوص کم خود را مدیون وجود هوا در ساختمان داخلیشان هستند. بتن سبک، با وزن مخصوص 300 تا 1000 کیلوگرم در متر مکعب را برای سیستمهای عایقبندی و همچنین به عنوان پرکننده و همچنین برای تحمل بارها می‌توان مورد استفاده قرار داد.

بتن سبک به روشهای مختلف ساخته می‌شود:

با حذف ریزدانه از دانه‌بندی بتنی، بتنی بدست می‌آید که در اصطلاح«بتن بدون ریزدانه» نامیده می‌شود.

با جانشین کردن دانه‌های سنگی بتن معمولی با مصالح سنگی همانند سنگ پا، رس منبسط شده و یا پرلیت و غیره بدست می‌آید که در اصطلاح به نام «بتن سبک» نامیده می‌شود.

با ایجاد حباب هوا درون دوغاب سیمان،که هنگام گرفتن آن، ماده اسفنج مانندی که در اصطلاح به نام «بتن گازی» نامیده می‌شود.

مقاومت بتن سبک به وزن مخصوص آن بستگی دارد، به طوری که هر چه وزن مخصوص زیادتر شود، مقاومت آن افزایش می‌یابد. البته نحوه به عمل آوردن قطعات بتن ساخته شده، روش ساخت دانه‌بندی و مقادیر اجزای متشکله آن در این امر مؤثرند.

بتن سبک یا بتن پوک چون وزن فضاییش کم است به عنوان پرکننده و چون فضای خالیش زیاد است به عنوان عایق به ویژه به عنوان عایق گرما مصرف می‌شود.

در جدول(1-7) مقایسه‌ای از انواع بتن سبک با آجر و بتن معمولی دیده می‌شود. مقدار مصرف سیمان و ماسه مصرفی به نسبت وزنی 1 به 3 است.

جدول(1-7) مقایسه انواع بتن سبک با آجر و بتن معمولی

نوع مصالح ساختمانی

وزن مخصوص kg/m3

مقدار مصرف سیمان kg/m3

مقاومت گسیختگی فشاری kg/m3

بتن معمولی

2200-2700

550

250-800

آجر

1600

-

100

بتن سبک از نوع عایق حرارتی

400-700

90-150

5-10

بتن سبک ساختمانی

700-1400

150-240

10-20

بتن سبک مقاوم

1200-1500

270-330

100-200

پرلیت و مشخصات آن:

پرلیت سنگ آتشفشان شیشه‌ای با ترکیب ریولیتی است که نزدیک به 75 درصد آن اکسید سیلسیم است که در حدود 3 تا 5 درصد آب به صورت حبس شده در خود دارد,و در اثر حرارت بین 900 تا 1100 درجه سانتیگراد آب حبس شده در آن به صورت بخار در می‌آید و خروج این آب حبس شده از داخل ذرات نرم شده سنگ پرلیت سبب می‌شود که حجم آن از 4 تا 20 برابر افزایش یابد. پرلیت خام دارای وزن مخصوص 2.2 است و پس از انبساط،حجم آن 10 تا 20 برابر افزایش می‌یابد و در هر متر مکعب تقریباً وزنی معادل 60 تا 110 کیلوگرم خواهد داشت.

پرلیت به دلیل دارا بودن ضریب حرارتی پایین و خاصیت جذب صدای زیاد، در ساختمان و صنایع دیگر مصرف فراوان دارد. ذرات پرلیت با سیمان پرتلند و آب ترکیب می‌شود و بتن سبکی تولید می‌نماید که می‌توان آنرا برای دیوارهای پرکننده و سقف سبک و پوشش اصلی سقف و تولیدات پیش ساخته و نمونه‌های مختلف عایق دایم استفاده نمود.علاوه بر موارد ذکر شده بیش از 1500 نوع مصرف در صنعت می‌توان برای پرلیت نام برد, از جمله استفاده به عنوان فیلتر افزاینده در کارخانه‌های نوشابه‌سازی و آب میوه و روغن نباتی و داروسازی و همچنین در حفر چاههای نفت و موارد دیگر نام برد. بنابراین هدف از این مطالعه بررسی تأثیر پرلیت در میزان کاهش وزن بتن و همچنین افزایش مقاومت آن می‌باشد.

بررسیهای علمی و عملی جدی برای اکتشاف ذخایر پرلیت ایران در سال 1375 در منطقه آذربایجان شرقی، بویژه مناطق خلخال و میانه که دارای پتانسیل لازم از لحاظ سنگهای پرلیت‌دار بودند آغاز گردید. این بررسیها منجر به کشف ذخایر عظیمی از پرلیت در مناطق شرق جاده میانه – تبریز، ناحیه سفید خانه در 46 کیلومتری شمال شرقی میانه و دیگر نقاط در همان حدود شد. از میان ذخایر کشف شده منطقه سفیدخانه به دلیل کیفیت و ذخیره مناسب و موقعیت استخراجی به منظور بررسیهای تفصیلی انتخاب گردید. معدن پرلیت سفید خانه ذخیره‌ای در حدود 5.0 میلیون تن سنگ معدن دارد و کیفیت این ماده معدنی از نوع سنگ پرلیت و دارای استانداردهای بین المللی است و می‌توان با اعمال تکنولوژی لازم برای پختن، آن را برای مصارف گوناگون تهیه نمود و به بازار عرضه کرد. آزمایش نمونه‌ها نشان داده است که ساختار کریستالی آن از تعداد زیادی قطعات بزرگ شیشه‌ای آتشفشانی خاکستری کمرنگ با اندازه‌هایی کمتر از یک سانتیمتر هستند و به آسانی خرد می‌شوند. پولکهایی از جنس میکا تا حداکثر 2 میلیمتر در این نمونه‌ها دیده می‌شود, همچنین مواد رنگی سبکی که نشان دهنده خصوصیات اولیه شیشه است درآن وجود دارد

خواص شیمیایی آن از حدود ریولیت تا آندریت متغیر است و دارای بیش از70 درصد sio2 است. ضریب شکنندگی قطعات خرد شده 5/1 است,که این امر بخاطر خواص شیشه‌ای ریولیت با محتویات 72 درصد مواد سیلیکاتی است.

تکنیک و روش تولید پرلیت منبسط شده

ماده خام اولیه پرلیت از معدن آن واقع در آذربایجان استخراج می‌شود و پس از شکسته، خرد، خشک و دانه‌بندی شدن آن برای تولید پرلیت منبسط شده به محلهای کوره انبساط حمل می‌کنند.نخست در کوره اولیه گرم می‌کنند تا برای انبساط آماده شود. در این گروه مواد اولیه با حرارتی حدود 350 درجه سانتیگراد گرم می‌شوند، سپس پرلیت گرم شده را برای انبساط در یک کوره قائم که با گازوئیل و یا گاز گرم می‌شود قرار می‌دهند، تا 1100 درجه سانتیگراد حرارت ببیند.پس از انبساط، پرلیت سبک شده را با جریان هوا حمل می‌کنند و پس از آنکه مواد خیلی ریز را از هم جدا کردند,پرلیت سرد شده را برای بسته‌بندی در سیلوی مخصوص انبار می‌کنند.بازدهی یک کوره با ظرفیت حدود یک تن در ساعت حدود 5 تا 8 متر مکعب پرلیت منبسط شده خواهد بود. لذا ظرفیت در کوره انبساط یاد شده در حدود 16 متر مکعب در ساعت است.

محصولات تولید شده از پرلیت

محصولاتی را که می‌توان از پرلیت منبسط شده برای صنایع ساختمان تولید نمود بشرح زیر است.

بتن آماده(مخلوط سیمان پرتلند و پرلیت منبسط شده) برای انواع احتیاجات ساختمانی، برای استفاده در ملاتها، تهیه بتن‌های پرلیتی، برای روکاری ساختمانها، حمامها و استخرهای سرپوشیده و غیره.

ساختمانها که استفاده از آن در ساختمانها به کمک پمپ و یا مالیدن بر روی دیوار اعمال می‌شود و سرعت کار و صرفه جویی در تعداد کارگر در این روش، قابل قیاس با روشهای سنتی نیست، این ماده از نظر عایق بندی صدا و حرارت نیز بر مصالح سنتی ترجیح داده می‌شود.

تهیه پرلیت مخلوط با مواد قیری برای پوشش سقفها .

تهیه محصولات پرلیتی برای عایق بندی لوله‌های آب گرم وسرد تهیه پرلیت منبسط شده برای کف اتاقها .

مصنوعات پرلیتی و مصارف آن در صنعت

پرلیت پخته شده را می‌توان به صورت مستقیم و یا در واحدهای صنعتی تولید مصنوعات پرلیتی استفاده نمود.مصارف عمده پرلیت عبارتند از:

الف: تهیه ملات سیمان پرلیت:پرلیت منبسط شده را می‌توان با نسبتهای مختلف با سیمان مخلوط کرد و ملاتهای مختلفی تهیه نمود. ملات تهیه شده از سیمان و پرلیت دارای امتیازهایی نسبت به ملاتها معمولی است که شامل:

وزن آن کمتر از یک دوم ملات معمولی سیمان است.2-مقاومت آن در مقابل آتش 4 برابر ملات معمولی سیمان است.

ضریب هدایت حرارتی آن 8 برابر کمتر از ملات معمولی سیمان است(8 برابر عایقتر) ضریب هدایت صوتی آن کمتر از ملات معمولی سیمان است.

تاریخچه پرلیت

لغت پرلیت از پرل فرانسوی به معنی مروارید گرفته شده است. بشر قرن سوم پرلیت، که سنگی سیلیسی آتشفشانی و با رنگ خاکستری روشن و یا سیاه شیشه ای بوده را می شناخته. در سال 1914 ،طی اتفاقاتی توسط دو محقق بطور مجزا،منحصر به فردترین خاصیت پرلیت کشف شد.یک دندانپزشک امریکایی حین کار کردن روی مینای دندان و یک زمین شناس بهنگام استفاده از ماسه های ساحلی برای خاموش کردن آتش سوزی سواحل جزیره نیلوس در یونان ،متوجه انبساط این سنگ در اثر گرما گردیدند.

بهرحال انجام آزمایشاتی بر روی پرلیت های موجود در کانسارهای نزدیک آریزونا در امریکا در طی چندین سال منجر به تولید پرلیت از سال1946 برای مصارف صنعتی گردید. در ایران پی جویی و اکتشافات پرلیت در سال 1355 شمسی آغاز گردید . اولین ذخیره ای که توسط سازمان زمین شناسی کشف و مطالعه شد،پرلیت سفید خانه در ناحیه میانه آذربایجان بود.

بشر امروز همواره در پی یافتن راه حلهایی برای بهبود کیفیت زندگی و بالا بردن سطح رفاه خود و جامعه می باشد. ارتقاء صنایع غذایی و کشاورزی از مظاهر عمده پیشرفت و بالا بردن سطح کیفی زندگی انسانهاست. در جهت حرکت همواره آدمی دراین راستا ،بکارگیری پرلیت جهشهای شگرفی در صنعت کشاوزی پدید آورده و خواهد آورد که در فصول آینده به آن پرداخته خواهد شد. این ماده بنام طلای سفید نیز شناخته می شود. سالهاست که در اروپا و امریکا با ابعاد وسیع در تمام صنایع (کشاورزی-نهال کاری-آبیاری-سبزینه کاری –توسعه فضای سبزو....)کاربرد دارد. جدول زیر آنالیز عناصر و ترکیبات متشکله پرلیت را برای ما بیان می کند.

Compound

Ajm-150

Pb

Cd

SiO2

So3

CaO

Na2O

Al2O3

K2O

H2O+

Fe2O3t.

LOI.1050.C.1hr

61

2.63

71.07

<.03

0.72

3.29

13.13

5.08

5.11

0.84

5.28

t. total iron as ferric Oxids Fe2O3

خواص منحصر به فرد پرلیت و نتایج استفاده از آن در کشاورزی و باغبانی

پرلیت در ترکیب خود،دارای 2 الی6 درصد آب می باشد. طبیعی است که ضمن گرما دادن به این ماده و تبخیر آب موجود ، حجم ثانوی بین 4 الی20 برابر حجم اولیه افزایش می یابد و شکل فیزیکی دوایرمتحد المرکز با منافذ بسیار زیاد ایجاد می گردد که این موضوع منتج به 1.منبسط شدن 2. سبک شدن پرلیت می شود. لازم به ذکر است که این عمل رنگ پرلیت را هم از خاکستری یا سیاه شیشه ای به سفید برفی یا سفیدخاکستری تبدیل می کند.پس پرلیت منبسط شده (حرارت داده شده) ماده ای است سبک ،متخلخل،باPH خنثی که قادر به جذب و نگهداری آب است.این ویژگیهای بخصوص منتج به نتایج زیر در دنیای کشاورزی می باشد

با اضافه کردن پرلیت برای حفظ رطوبت می توانیم توسط این ماده ، آب را به میزان زیاد و به مدت طولانی و با یک توزیع و پخش یکسان در دل خاک در اختیار ریشه قرار دهیم و از هدر رفتن چه به شکل زهکش و چه از طریق تبخیر جلوگیری کنیم. در واقع انبار بسیار کوچک برای نگهداری مقادیر بسیار بزرگی از آب برای گیاه در دل خاک همواره ایجاد کرده ایم که به مرور آب را در اختیار ریشه قرار داده و در حجم ،پخش یکسان را برای ما میسر می کند.

مرطوب بودن همواره خاک سبب می شود که از شسته شدن مواد غذایی خاک جلوگیری شود

وجود تخلخل ، تبادلات هوایی و گازی را در خاک برای ریشه گیاه به سهولت فراهم می آورد این سبب اصلاح سیستم هوادهی و آبدهی خاک و در نتیجه بهبود عمل تهویه خاک می شود. درحضور پرلیت مشکل تجمع Co2 در خاک نیز تا حدود زیادی مرتفع می شود.همچنین ریشه ها و اندامهای زمینی گیاه با سهولت بیشتری درخاک قادر به حرکت هستند.

دارابودن PH خنثی درحد 5/7-5/6 از هر گونه اختلالی در ریشه طبیعی گیاه جلوگیری می کند.

بدلیل بالا بودن ظرفیت گرمایی ویژه آب موجود ،سفید بودن و عایق بودن پرلیت و در نتیجه انعکاس نور خورشید توسط پرلیت ،از هر گونه تغییرات ناگهانی در دمای خاک و ایجاد شوک به ریشه گیاه جلوگیری می شود.

از لحاظ بهداشتی،با یک محیط استریل روبرو هستیم. یعنی عاری از میکروارگانیسم های بیماریزا و جالبتر آنکه پرلیت دارای خواص علف کش نیز می باشد.

بدلیل معدنی بودن این ماده و در نتیجه مشابهت در ترکیب شیمیایی به خاک ، هیچگونه اختلالی در ساختمان خاک ایجاد نخواهد کرد.

پرلیت مسبب تسریع در رشد و سبزینه کردن گیاه نیز می شود.

در ساختمان خود دارای مواد غنی ساز از جمله آهن – سدیم-کلسیم و کانیهای نادر دیگر می باشد

پرلیت و کاربرد آن در اهداف صنعت کشاورزی

ذیلاً به چگونگی استفاده از پرلیت در صنعت کشاورزی اشاره می شود

استفاده از پرلیت بعنوان بستر کاشت گیاه و بستری برای رشد و پرورش بذر

در این خصوص می بایست اختلاط مناسبی از پرلیت و کودهای شیمیایی و خاک برگ را فراهم آوریم. این اختلاط برای برخی از گیاهان گلدانی نیز استفاده می شود (از پرلیت مخلوط نشده در ته گلدانها جهت زهکشی خوب می توان استفاده کرد.)به منظور رشد و پرورش بذر از مخلوط پرلیت با مواد آلی منحصراً یا به همراهی خاک استفاده می شود.

اصلاح خاک و چمن

خاکهای ماسه ای فاقد قدرت نگهداری وجذب آبند و خاکهای رسی فاقد قدرت تبادلات گازی و زهکشی خوب هستند. هر دو نوع خاک توسط پرلیت اصلاح پذیرند.

پرلیت در خاکهای ماسه ای باعث کاهش فاصله ذرات ماسه از هم می شود که خود منجر به موارد زیر می شود.

افزایش قابلیت جذب و حفظ آب

نزدیک کردن خاک به شرایط خنثی

پرلیت در خاکهای رسی منجر به موارد زیر می شود:

ایجاد منفذ جهت زهکشی و تبادلات گازی در خاک

کاهش ترک خوردگی در خاک

جلوگیری از تراکم و در نتیجه بهبود توزیع و انتشار ریشه در خاک و نهایتاً بهبود رشد و نمو گیاه

نکته:تفاوت کودهای شیمیایی با پرلیت در زمینه اصلاح خاک:

بکارگیری پرلیت برای اصلاح خاک بیشتر در زمینه های گلکاری و مواد باغبانی وزمینهای سلفاته و کشت های دیمی و زمینهایی با بافت سنگین مورد مصرف قرار می گیرد و به بهترین شکل و تواماً مشکل فیزیکی و شیمیایی خاک را حل می نماید و با توجه به نرخ و تولید پائین از کودهای شیمیایی کاملاً مقرون به صرفه خواهد بود.

استفاده در زمینه های هیدروپونیک

می دانیم که در جاهایی که فاقد خاک کشاورزی می باشد، شیوه ای از کشت بنام هیدروپونیک که لغتی یونانی است و به معنی کشت در آب می باشدمرسوم است. در این شیوه نیاز به تهیه آب حاوی مواد مغذی داریم. به این منظور می توان از پشم سنگ یا پرلیت سود برد.البته پرلیت در این خصوص بهتر عمل می کند و نمونه عملی آن روی کشت گوجه فرنگی نشان داده که در استفاده از پرلیت میزان محصول 7%بیشتر از حالتی است که از پشم سنگ استفاده شده و این دقیقاً به این علت است که توانایی پرلیت در حفظ و نگهداری آب و مواد غذایی چشمگیر است . لازم به ذکر است پرلیت در هر بار کشت هیدروپونیک مجدداً قابل استفاده می باشد و فقط ممکن است که برای استفاده مجدد ، نیاز به استریزاسیون داشته باشد.

استفاده بعنوان Carrierحمل کننده

پرلیت می تواند به عنوان یک Carrier یا ناقل برای کودهای شیمیایی ،علف کشها و آفت کشها بکار رود.

ویژگیهای مهم بتن

کلیات

با توجه به نوع سازه و درجه اهمیت آن باید به ویژگیهای اصلی بتن به هنگام ساخت ، ریختن و نگهداری توجه مخصوص به عمل آید . بتن با کارایی و دوام زیاد به بتنی اطلاق می شود که بتواند به راحتی ریخته شود در مقابل شرایط محیطی خورنده و بالاخره بارهای وارد بر آن به خوبی مقاومت کند و مشخصات آن تغییر ننماید از این رو پیمانکار باید نسبت به ساخت بتن با کیفیت خوب اقدام نماید ویژگیهایی که باید مورد توجه پیمانکار قرار گیرد به شرح زیر است :

کارایی بتن

بتن کارا بتنی است که بتوان به راحتی آن را ساخت ، حمل نمود ، در قالب مودر نظر ریخت و متراکم نمود بدون اینکه در یکنواختی[2] آن در طول مراحل فوق تغییری حاصل شود . کارایی بتن بستگی به عوامل زیر داشته و پیمانکار ملزم به رعایت آن می باشد .

اسلامپ

کارایی به میزان اسلامپ و روانی بتن ساخته شده بستگی دارد . میزان اسلامپ بر اساس روش مندرج در استاندارد (دت505) کنترل می شود . پیمانکار موظف است بتن مورد نظر را بر اساس اسلامپهای خواسته شده در مشخصات فنی خصوصی و نقشه های اجرایی تهیه نماید . بتن هایی که به هنگام ریختن ، اسلامپ شان با مشخصات خواسته شده مطابقت ننماید مردود بوده ، باید از مصرف آن خودداری شده و از کارگاه خارج گردند اضافه نمودن آب برای بالا بردن اسلامپ بتن های سفت شده پس از ساخت به هیچ وجه مجاز نیست و انجام این امر باعث تغییرات کلی در مشخصات بتن ساخته شده خواهد شد . بسته به میزان اسلامپ و نوع کاربرد بتن به 4 گروه سفت ، خمیری ، شل و آبکی تقسیم می شود . میزان اسلامپ برای اعضا و قطعات ختلف بر اساس جدول (1-1) توصیه می شود

جدول(1-1)میزان اسلامپ برای اعضا وقطعات بتنی

ردیف

نوع عضو یا قطعه بتنی

اسلامپ به میلیمتر

حداقل

حداکثر*

1

شالوده ها و پی دیوارهای بتن آرمه [1][1][5]

25

75

2

شالوده های با بتن ساده ، صندوقه ها و دیوارهای زیر سازه ها

25

75

3

تیرها و دیوارهای بتن آرمه

25

100

4

ستونها

25

100

5

دالها و پیاده روهای بتنی[2][2][6]

25

75

6

بتن حجیم

25

در صورتی که لرزش و ارتعاش با روشهای دستی انجام شود به مقدار حداکثر می توان 25 میلیمتر اضافه نمود.

مصالح مصرفی

از دیگر عوامل مهم در کارایی بتن ، انتخاب صحیح مصالح مصرفی و نسبتهای اختلاط آنها است . سیمان با نرمی زیاد باعث بالا بردن کارایی بتن می شود شن و ماسه طبیعی گرد گوشه دارای کارایی بیشتری نسبت به شن و ماسه شکسته است و شن و ماسه شکسته مکعبی دارای اولویت بیشتری نسبت به وضعیت مشابه با دانه های غیر مکعبی می باشد در هر صورت مصالح سنگی مناسب از عوامل مهم در کارایی بتن محسوب می شود و باید با توجه به مندرجات این کتاب و دستورات دستگاه نظارت نسبت به انتخاب آن اقدام شود .

مواد افزودنی

برای بالا بردن کارایی بتن با نسبت آب به سیمان معین از مواد افزودنی استفاده می شود نوع و میزان مصرف این مواد مطابق مندرجات این کتاب مشخصات فنی خصوصی و دستورالعملهای کارخانه سازنده خواهد بود نوع و میزان مصرف مواد افزودنی باید به تایید دستگاه نظارت برسد .

درجه حرارت

عدم رعایت درجه حرارت تعیین شده برای مخلوط بتن به هنگام ساخت ، باعث بروز اشکالاتی در امر ریختن بتن و نهایتاً تغییرات جدی در ویژگیهای آن خواهد شد . از این رو رعایت مندرجات این کتاب بخصوص « بتن ریزی در هوای گرم » و « بتن ریزی در هوای سرد » الزامی است .

پایایی (دوام) بتن

بتنی که در ساخت و نگهداری آن“ تمامی مشخصات فنی رعایت شود دارای پایایی زیاد در برابر شرایط محیطی می باشد عوامل مهمی که باید برای دستیابی به بتن پایا به آن توجه شود به قرار زیر است.

نسبت آب به سیمان

از خصوصیات مهمی که بر دوام بتن اثر می گذارد میزان آب در مخلوط بتن است بسته به شرایط محیطی و عملکرد سازه باید نسبت آب به سیمان در مشخصات فنی خصوصی قید شود در صورت عدم وجود این نسبت استفاده از ارقام جدول (2-1) با توجه به شرایط رویارویی الزامی است .

جدول(2-1)نسبت آب به سیمان با توجه به شرایط رویارویی بتن

شرایط رویارویی

نسبت آب به سیمان

1- بتن با شرایط نفوذ ناپذیری

الف- در رویارویی با آب صاف

5/0

ب- در رویارویی با آب لب شور[3][3][10] و آب دریا

45/0

2- بتن در معرض شرایط جوی مرطوب و یخ زدن

الف- جدول ، آبرو ، جان پناه و مقاطع با ضخامت کم

45/0

ب- سایر مقاطع

5/0

پ – بدون بکار بردن مواد یخ زدا

45/0

3- برای حفاظت بتن آرمه در برابر خوردگی هنگام رویارویی با نمکهای یخ زدا و آبهای لب شور

آب دریا و ترشحات حاصل از آن

45/0

حداقل مقدار سیمان

انتخاب نسبت صحیح آب به سیمان تراکم کافی و عمل آوردن مناسب می تواند دوام بتن را بهبود بخشد . برای دستیابی به اهداف فوق با نسبت آب به سیمان معین حداقل میزان مصرف سیمان بسته به قطر مصالح درشت دانه نباید از ارقام مندرج در جدول (3-1) کمتر باشد تا امکان لرزاندن و مرتعش ساختن د رکارگاه فراهم آید بسته به شرایط رویارویی و حداکثر قطر شدن میزان حداقل سیمان در جدول مورد بحث داده شده است

جدول (3-1) حداقل مقدار سیمان لازم در بتن برای حصول پایایی در شرایط محیطی

مختلف

نوع بتن

حداکثر اندازه

اسمی مصلح سنگی به میلیمتر

بتن آرمه

بتن پیش تنیده

بتن ساده

(بدون آرماتور)

شرایط محیطی

40

20

15

10

40

20

15

10

40

20

15

10

بتن کاملاً محافظت شده در برابر هوا با شرایط مخرب به جز مدت کوتاهی که در هنگام ساخت در معرض هوای معمولی واقع می شود

225

250

275

300

300

300

300

300

200

225

250

275

بتنی که از باران شدید و یا یخزدگی در حالتی که از آب اشباع شده محافظت گردد بتن زیر خاک و بتنی که بطور مداوم زیر آب قرار می گیرد .

275

300

325

350

300

300

325

325

325

250

275

300

بتنی که در معرض نمکهای یخ زدا قرار می گیرد

275

300

325

350

300

300

325

350

250

275

325

350

بتن در معرض آب دریا یا باتلاق یا باران شدید و یا در معرض تر و خشک شدنهای پیاپی و یا یخزدگی هنگامی که تر است و یا در معرض بخارهای خورنده است .

325

375

400

425

325

375

400

425

275

300

325

375

بتنی که در معرض فرسایش شدید ، عبور و مرور وسایط نقلیه یا آب جاری یا PH حداکثر 5/4 است و یا رویه های بتنی محافظت نشده و ...

نیازمند بررسیهای ویژه است .

بتنی که در معرض فرسایش شدید ، عبور و مرور وسایط نقلیه یا آب جاری یا PH حداکثر 5/4 است و یا رویه های بتنی محافظت نشده نیازمند بررسیهای ویژه است .

بتن با حباب هوا

هنگامی که بتن در برابر شرایط یخ زدن قرار دارد یا برای آب شدن یخهای مجاور آن از نمکهای یخ زدا استفاده می شود برای بالا بردن دوام بتن باید از مواد حباب ساز استفاده می شود با رعایت میزان نسبت آب به سیمان مندرج در جدول(4-1) ،‌بسته به قطر درشت ترین دانه شدن مصرفی و شرایط رویارویی ، میزان کل حباب هوا در بتن برای مقابله با یخ زدن ، نباید بیشتر از ارقام جدول(4-1) اختیار شود نسبت آب به سیمان در بتن با حباب هوا نباید در هیچ مورد از 5/0 تجاوز نماید ویژگیهای ماده حبابساز باید قبل از مصرف به تایید دستگاه نظارت برسد میانگین نتایج به دست آمده در سه آزمایش متوالی نباید از مقادیر داده شده در جدول (4-1) تجاوز نماید برای بتن های طبقه ز30 و بالاتر می توان میزان هوای مندرج در جدول (4-1) را تا (1%) کاهش داد به هنگام ساخت بتن با حباب هوا باید طرح اختلاط بتن توسط آزمایشگاه مورد قبول کارفرما تهیه گردد در مواردی که میزان هوای موجود در بتن ، (4%) تا (6%) است باید به میزان اولیه سیمان 50 کیلوگرم درمتر مکعب اضافه نمود در مواردی که به تشخیص دستگاه نظارت میزان هوای بیشتری مورد نیاز باشد باید به ازای هر (1%) هوای اضافه 25 کیلوگرم سیمان به متر مکعب بتن اضافه شود .

جدول(4-1)مقدار درصد هوای توصیه شده برای بتن های با حباب هوا مقاوم در برابر یخزدگی

ردیف

حداکثر اندازه شن میلیمتر(اینچ)

مقدار کل درصد هوای موجود در بتن با حباب هوا

شرایط محیطی شدید«2»

شرایط محیطی معتدل«3»

1

5/9(8/3)

5/7

6

2

5/12(2/1)

7

5/5

3

19(4/3)

6

5

4

25(1)

6

5/4

5

5/37(2/11)

5/5

5/4

6

50(2)

5

5/4«4»

7

75(3)

5/4

5/3«4»

رواداری برای ارقام جدول (5/1%)+ است

«2» شرایط محیطی شدید – شرایط محیطی سردی است که بتن قبل از یخ زدن به صورت مداوم در تماس با رطوبت قرار داشته است مانند سطح جاده ها ، دال پلها ، پیاده روها و منابع آب .

«3» شرایط محیطی معتدل – شرایط محیطی سردی است که بتن قبل از یخ زدن به ندرت در معرض رطوبت قرار گرفته است و از مواد یخ زدا استفاده نمی شود مانند بعضی دیوارهای خارجی ، شاه تیرها و دالهایی که درتماس با زمین نمی ابنشد

«4» درصد هوا برای این دو ردیف مانند سایر ردیفهای جدول نسبت به کل مخلوط محاسبه می شود ولی به هنگام آزمایش اندازه گیری درصد هوا باید مصالح بزرگتر از قطر 5/37 میلیمتر به وسیله دست یا الک جمع آوری و از مخلوط حذف شود

بتن مقاوم در برابر حملات شیمیایی

بتنی که با شرایط کاملاً مناسب و خوب ساخته نشده باشد چنانچه در مجاورت آبها یا خاکهای آلوده به مواد شیمیایی مهاجم[13] و خورنده[14] قرار گیرد از پایایی آن به شدت کاسته می شود از این رو شناخت عوامل کاهش دهنده این اثرات الزامی است انواع مواد شیمیایی که سازه های بتنی اغلب با آن مواجه هستند عبارتند از سولفاتها ، فاضلابهای خانگی و صنعتی . آبهای لب شور و آب دریا ، عواملی نظیر درجه حرارت ، سرعت زیاد مایع یا یخ مجاور سازه عدم دقت در عمل آوردن بتن ، تر و خشک شدنهای پیاپی و بالاخره خوردگی فولاد نیز باعث تضعیف بتن در مقابل حملات شیمیایی می شود عواملی نظیر پایین بودن نسبت آب به سیمان ، انتخاب صحیح نوع سیمان و نفوذ پذیری کم ، می تواند دوام بتن در مقابل حملات شیمیایی و فیزیکی را فزونی بخشد در جدول شماره (5-1) با توجه به شرایط محیطی و میزان سولفات موجود در آب و خاک ، نوع سیمان و حداکثر نسبت آب به سیمان برای تهیه بتنی پایا توصیه شده است

جدول (5-1) انتخاب نوع سیمان برای بتن هایی که در معرض سولفاتها قرار می گیرند

ردیف

شرایط رویارویی

درصد سولفات خاک قابل حل در آب (- -so4 )

میزان سولفات موجود در آبppm(- -so4 )

نوع سیمان توصیه شده

حداکثر نسبت آب به سیمان

1

ملایم

1/0-0

150-0

--

--

2

متوسط

2/0-1/0

1500-150

نوع 2 یا نوع 1 همراه با مواد پوزولانی یا نوع 1 همراه با مواد سوپر پوزولانی

5/0

3

شدید

2-2/0

10000-1500

توع 5

45/0

4

بسیار شدید

بیشتر از 2

بیشتر از 10000

نوع 5 همراه با مواد پوزولانی

توضیح

آب دریا با توجه به املاح موجود در آن حداقل در ردیف 2 جدول طبقه بندی می شود

میزان موجودی به هنگام استفاده باید توسط آزمایشگاه معتبر مشخص شود

در شرایط رویارویی ردیف 4 در صورت درخواست دستگاه نظارت باید تدابیر اضافی برای عمل آوردن و مراقبت کردن بتن اتخاذ گردد .

جدول فوق به عنوان راهنما از ACI-318-89 نقل شده است و باید به تفاوتهایی که در شرایط رویارویی این جدول و مندرجات آیین نامه بتن ایران وجود دارد توجه شود

به کار بردن مواد پوزولانی به میزان (15%) تا (25%) وزن سیمان مصرفی ، برای بالا بردن کیفیت بتن در مقابل حملاتشیمیایی توصیه می شود میزان سولفات وارد شده به بتن توسط مصالح سنگی باید به وزن (1/0%) وزن مصالح سنگی محدود شود کل میزان سولفات قابل حل در آب در مخلوط بتن بر حسب بنیان - -so4 نباید از (4%) و مقدار کلی سولفات از (5%) وزن سیمان موجود در مخلوط بتن بیشتر باشد د این محاسبه مقدار کل سولفات در مصالح و مواد متشکله بتن باید مورد توجه قرار گیرد.

بتن مقاوم در برابر سایش

بتن مقاوم در برابر سایش بتنی است که بتواند به نحوی در برابر اثرات فرسایشی عبور و مرور ، تردد ماشین آلات ، ضربه ، سائیدن مواد و یا اسباب و لوازم بر روی آن مقاومت نماید در ساخت بتن مقاوم به سایش و فرسایش باید به عوامل زیر مودر قرار گیرد .

الف : مقاومت فشاری

یکی از مهمترین عواملی که اثر مستقیم بر فرسایش بتن دارد مقاومت فشاری است مقاومت فشاری و یا مقاومت سایشی بتن با کم شدن فضای خالی بتن و پایین بودن نسبت آب به سیمان تامین می شود حداقل بتن مقاوم در برابر سایش بتن طبقه C25 است که نسبت آب به سیمان آن با توجه به شرایط رویارویی از جدول (2-1) به دست می آید .

ب : دانه بندی مصالح

دانه بندی مصالح بتن باید پیوسته بوده و با توجه به مشخصات مندرج در فصل مصالح حتی الامکان از نوع مصالح با مقاومت زیاد انتخاب شود حداکثر قطر مصالح سنگی در بتن های مقاوم به سایش 25 میلیمتر توصیه می شود

پ : اسلامپ

حداکثر اسلامپ برای بتن مقاوم در برابر سایش 75 میلیمتر است . توصیه می شود اسلامپ بتن برای لایه روکش[15] و مقاوم در برابر سایش در حدود 25 میلیمتر اختیار شود .

ت : میزان هوا

حداقل میزان هوا با توجه به شرایط رویارویی بتن از جدول (4-1) استخراج می شد برای بتن های داخل ساختمان که در معرض یخ زدن و تغییرات جوی نیستند حداکثر هوای موجود در بتن (3%) اختیار می شود.

ث : چنانچه امکان فرسایش سطح بتن با توجه به نوع مصرف بسیار زیاد باشد توصیه می شود که بتن اصلی با یک رویه از طبقه c30 که حداکثر قطر دانه های آن 5/12 میلیمتر باشد روکش شود.

ج : پرداخت سطح بتن

معمولاً برای صافکاری بتن حداقل 2 ساعت زمان بعد از ریختن آن لازم است لذا تا زمانی که آب سطح بتن کاملاً محو نشده است باید از ماله کشی سطح بتن پرهیز شود بدین منظور ممکن است از روشهای خاصی[16] برای جمع آوری آب سطح استفاده شود.

چ : عمل آوردن

عمل آوردن بتن باید فوراً پس از بتن ریزی شورع شود رعایت اصول و مندرجات این فصل و نیز دستورا

5-1- مقاومت بتن

از مهمترین خصوصیات بتن ، مقاومت آن است برای دستیابی به بتنی با مقاومت زیاد باید در انتخاب مصالح از نظر کمیت و کیفیت ، ساخت بتن ، حمل و ریختن و نهایتاً عمل آودرن و نگهداری ، دقت کافی به عمل آید عوامل متعددی در مقاومت نهایی بتن مؤثر خواهد بود که اهم آنها به شرح زیر و رعایت آنها توسط پیمانکار الزامی است .

نسبت آب به سیمان

مقاومت نهایی بتن شدیداً تحت تأثیر نسبت آب به سیمان است با توجه به شرایط ساخت و رویارویی بتن ، نسبت آب به سیمان در هر پروژه در دفترچه مشخصات فنی خصوصی ذکر می شود.دستگاه نظارت همواره خصوصاً به هنگام تهیه بتن این نسبت را کنترل می نماید.عدم رعایت نسبت آب به سیمان از طرف پیمانکار موجب مردود شدن شناختن بتن شده و چنین بتنی باید فوراً از کارگاه خارج شود چنانچه این نسبت در دفترچه مشخصات خصوصی ذکر نشده باشد استفاده از ارقام جدول 5-3-4-2 برای بتن معمولی و بتن با حباب هوا توصیه می شود .

جدول (6-1) حداکثر نسبت آب به سیمان مجاز برای بتن با مقاومتهای فشاری مختلف

ردیف

مقاومت فشاری بتن

(مگاپاسگال)

بتن معمولی

بتن با حباب هوا

1

15

8/0

71/0

2

20

7/0

61/0

3

25

62/0

53/0

4

30

55/0

46/0

5

35

48/0

40/0

6

40

43/0

-

7

45

38/0

-

توضیح

منظور از مقاومت فشاری بتن در جدول ، مقاومت فشاری 28 روزه آزمونه استوانه ای به قطر 15 و ارتفاع 30 سانتیمتر و دمای آزمایش 7/1 + 23 درجه سلسیوس است

برای بتن با حباب هوا و مقاومت بیش از 32 مگاپاسگال و بتن معمولی با مقاومت بیش از 35 مگاپاسگال باید نسبت آب به سیمان با توجه به طرح اختلاط و توسط آزمایشگاه معتبر مشخص شود

حداکثر میزان هوا در بتن نباید از ارقام مندرج در جدول (4-1) تجاوز نماید

حداکثر قطر مصالح سنگی 20 تا 30 میلیمتر فرض شده که با ثابت بودن نسبت آب به سیمان ، مقاومت بتن با کم نمودن قطر حداکثر شن ، زیاد خواهد شد

نوع سیمان

در شرایط مساوی و هنگام ساخت بتن با مصالح سنگی مشخص ، اسلامپ ، تراکم و مقاومت بتن تابعی از میزان سیمان و نوع آن است . تغییرات تقریبی مقاومت بتن با توجهبه نوع

مقدمه

پیش از تنیدگی عبارت از ایجاد تنش داخلی در یک جسم است تا تنش را که به علت تاثیر نیروهای خارجی بوجود می‌آید به مقدار مورد نیاز خنثی کند یا به عبارت دیگر پیش تنیدگی به معنای ایجاد تنش های دائمی مخالف با تنش‌هایی می‌باشد که دراثر بارهای خدمت در سازه ایجاد خواهند شد. عمده ترین کاربرد پیش تنیدگی در بتن پیش تنیده است .

بتن که یکی از ارزانترین و عملی ترین مصالح ساختمانی است,مقاومت خوبی در برابر فشار دارد و تاب کششی کمی از خود نشان می دهد.بنابراین در ناحیه ای از بتن که بعد از بارگذاری تحت کشش قرار می گیرد, قبلا ایجاد فشار می کنند. این عمل, به اصطلاح«پیش تنیدن بتن» نامیده می شود.

بر اساس «آیین نامه ACI318- 95 » بتن پیش تنیده عبارت است از بتن سازه‌ای (ساختمانی) که جهت کاهش تنش های کششی بالقوه حاصل از بارها, در آن تنش های داخلی ایجاد شده است.

هدف اصلی از پیش تنیده کردن یک عضو بتنی محدود کردن تنش های کششی و ترکهای ناشی ار لنگر خمشی تحت تاثیری بارهای وارده درآن عضو می‌باشد.

پیش تنیدگی اصلی عمومی است که در موارد دیگر نیز مورد استفاده قرارمی گیرد. یک چرخ دو چرخ یک مثال از پیش تنیدگی را نشان می دهد: لاستیک چرخ دوچرخه بسیار نرم است و سیمهای داخل آن بسیار بلندتر است, به طوری که تحت نیروی فشار امکان کمانش آنها وجود دارد. ولی هم لاستیک و هم سیمها در مقابل کشش مقاوم اند, پس لاستیک چرخ را پراز باد می کنند و در سیمها کشش قبلی ایجاد می کنند.

تاریخچه

مصریها در 5000 سال پیش, در ساختن قایقهایشان از خاصیت پیش تنیدگی استفاده می کردند. بدین ترتیب که, برای اتصال چوبهای بدنه قایق, تیغهای آهنی گرم به کار می‌بردند تا یعد از سرد شدن و انقباض آنها قطعات چوبی به هم فشرده شوند.

اولین کسی که ظاهراً توانست با ایجاد تنش فشاری در بتن مقاومت آن را تحت تاثیر لنگر خمشی افزایش دهد یک نفر آمریکایی به نام جکسون بود که اختراع خود را در سال 1886 به ثبت رسانید. دوسال بعد, در سال1888, دوهرینگ, مهندس آلمانی, با قرار دادن یک میله فولادی کشیده شده در داخل دال بتنی توانست اولین دال بتنی پیش تنیده را ایجاد کند. در سال 1896, مندل مهندسی اتریش اصل پیش تنیدگی را در تیر بتن پیش تنیده از فولاد معمولی با تنش اولیه 120 نیوتن بر میلیمتر مربع استفاده کرد و از افت ناشی از نشست و وارفتگی آگاهی نداشت, فولاد به زودی کشش اولیه خود را از دست داد و تیر تبدیل به بتن آرمه معمولی شد.

در سال 1939, امپرگر, مهندس اطریشی استفاده از بتن آرمه با پیش تنیدگی جزئی را پیش تنیده می شود, دارای آرماتورمعمولی (که در بتن مورد استفاده قرار می‌گیرد) باشد و قطعه در موقع بار سرویس نیز بار کششی تحمل بکند را مورد استفاده قرار داد.


انواع سقف ها

دیوارها می توانند هر فضایی را محصور نمایند ، اما سقف هر فضایی را امن می نماید سقف ها به فضا آسایش می بخشند و آنها را از هجوم عوامل طبیعی مانند آفتاب و برف و باران حفظ می نمایند به کمک سقف ها همانطور که در یک قفسه کتابخانه دیده می شود می توانیم ساختمان را به طبقات متعدد تقسیم نماییم در حقیقت ، دیوارها محیط اطراف خود را در جهت افقی تقسیم می کنند و
دسته بندی عمران
بازدید ها 0
فرمت فایل doc
حجم فایل 385 کیلو بایت
تعداد صفحات فایل 38
انواع سقف ها

فروشنده فایل

کد کاربری 2106
کاربر

انواع سقف ها

آشنایی با سقفها و عملکرد آنها

دیوارها می توانند هر فضایی را محصور نمایند ، اما سقف هر فضایی را امن می نماید . سقف ها به فضا آسایش می بخشند و آنها را از هجوم عوامل طبیعی مانند آفتاب و برف و باران حفظ می نمایند . به کمک سقف ها همانطور که در یک قفسه کتابخانه دیده می شود می توانیم ساختمان را به طبقات متعدد تقسیم نماییم در حقیقت ، دیوارها محیط اطراف خود را در جهت افقی تقسیم می کنند و سقف ها محیط را در جهت قایم تقسیم می نمایند.

مهم ترین ویژگی های یک سقف را می توان به ترتیب زیر برشمرد :

مقاومت و پایداری آن در برابر نیروهای وزن خود و بارهایی که قرار است سقف تحمل نماید که عمده ترین آن در بام بار برف می باشد .

مقاومت در برابر آب و هوا : سقف باید به وسیله مصالح عایق مانع از عبور رطوبت به داخل فضا شود . دوام قطعات و اجزای مختلف تشکیل دهنده سقف در برابر فرسودگی. همچنین مقاومت در برابر گرما و سرما و آتش سوزی از جمله ویژگیهای یک سقف مناسب است .

هر سقفی از لحاظ نوع ساخت و عملکرد سازه ای با توجه به شرایط می تواند به طرق مختلفی طراحی و اجرا گردد،که از آن جمله اند :

ü الف ) سقف طاق ضربی

ü ب )سقف چوبی

ü ج ) دال ها ( یکطرفه ،

ü دوطرفه و تیرچه بلوک

ü د ) سقف های کمپوزیت

ü ه ) سقف های خرپایی یا فضایی

لازم به ذکر است که سقف های تیرچه بلوک که خود نوعی دال یکطرفه می باشد ، از سه عنصر دال ، تیرچه و بلوک تشکیل یافته که تیرچه ها و بلوک ها خود انواع مختلفی دارند .

بلوک ها که نقش باربری ندارند و فقط خاصیت پرکنندگی دارند انواع مختلفی دارد ازجمله :

بلوک های بتنی

بلوک های سفالی

بلوک های پلاستوفوم

تیرچه ها نیز چند نوع مختلف دارند :

  • · تیرچه های پیش کشیده
  • · تیرچه های پس کشیده
  • · تیرچه های پیش تنیده

انواع سقف‌های بتنی :

یکی از اجزای اصلی تشکیل‌دهندة انواع ساختمان‌ها، سقفهای بتنی هستند که نقش اساسی آنها انتقال نیـروهای قائم و افقی ناشی از وزن مـردة سقف، سربارها و نیروهای با دو زلزله به تیرها و ستونها و دیوارهای بابر است. در ضمن، اتصال کلیه اجزای بابر قائم (ستونها و دیوارها) به یکدیگر، موجب تقویت آنها شده و به این ترتیب، کل ساختمان در مقابل نیروهای وارده، به طور واحد واکنش نشان می‌دهد.

نظر به اینکه سقفها سهم نسبتاً زیادی از قیمت تمام شده ساختمان را به خود اختصاص می‌دهند. طراحان ساختمان، سیستم‌های متنوعی را به منظور هرچه اقتصادی‌تر کردن آنها، ابداع و اجرا کرده‌اند که صرفه‌جویی در مصرف بتن و فولاد، کاهش یا حذف قالب‌بندی، بهبود روشهای ساخت و ارتقای کیفیت اجرای محورهای اساسی، کوششهای انجام شده را تشکیل می‌دهند. در زیر، روند اساسی این مراحل پیشرفت به طور مختصر شرح داده می‌شود.

برای صرفه‌جویی در مصرف بتن و سبکتر کردن وزن سقف، قسمتی از مقطع سقف که در منطقة کششی قرار می‌گیرد، حذف و فقط آن مقدار از سطح مقطع بتن که برای جاگذاری آرماتورهای عرضی و کششی لازم است، باقی گذاشته می‌شود. این کار به ویژه برای کاهش وزن مردة سقف و ساختمان، دارای اهمیت خاصی است. فاصله محلهای باقی‌مانده به حد کافی نزدیک به هم انتخاب می‌شوند، تا مناطق فشاری و کششی مقطع بتنی سقف به طور یکپارچه عمل کنند و سقف حالت اولیة خود را از دست ندهد. این روش منجر به طرح دالهای مجوف، با پشت‌بند، لانه زنبوری مانند آنها گردیده است. مصرف بتن در این نوع سقفها، به حدود مقدار اولیه، و وزن سقف نیز تقریباً به همین میزان کاهش می‌یابد. از طرف دیگر، به علت سبک‌تر شدن وزن سقفها، در مصرف میلگرد و هزینة اجرای بقیة قسمتهای باربر ساختمان، صرفه‌جویی قابل ملاحظه‌ای شود.

قالب‌بندی برای ایجاد فضاهای مجوف در دال، معمولاً به روشهای زیر انجام می‌شود:

در روش نخست، برای اجتناب از قالب‌بندی محلهای خالی و پر کردن آن محلها، از بلوک‌های مجوف و سبک وزن استفاده می‌شود. به این منظور، مصالح پرکننده را به فواصل معین روی قالب کف قرار داده و میلگردها را نصب می‌کنند و سپس بتن‌ریزی انجام می‌شود.

در روش دیگر، از قالبهای فلزی و یا پشم‌شیشه که به راحتی قابل نصب و جمع‌آوری هستند، استفاده می‌گردد

سقف تیرچه و بلوک

سقف تیرچه و بلوک جزء دال های یک طرفه به حساب می آید که در این نوع سقف برای کاهش بار مرده از بلوک های توخالی بسیار سبک ( مجوف) بتنی یا سفالی برای پر کردن سقف استفاده می شود0

کاربرد تیرچه و بلوک در ساختمان

: تیرچه و بلوک برای پوشش سقف ساختمان های اسکلت آجری و اسکلت فلزی واسکلت بتن ارمه استفاده می شود.

اما چرا جزء بهترین ها است ؟
1: باعث سبکی سقف می گردد
2: دوام خوب در مقابل آ تش سوزی دارد
3: مقاومت خوبی در مقابل نیروهای افقی مانند باد و زلزله دارد
4: عایق صوتی خوبی است
5: عایق حرارتی در مقابل سرما وگرماست
6: عایق رطوبتی است
7: صاف و هموار بودن سطح زیر و روی سقف پس از اجرا از دیگر محاسن این نوع سقف محسوب می گردد
اما همانند دیگر سقفها این نوع سقف نیز دارای معایبی نیز هست که عمده عیب آن:
1: اجرای آن نسبت به سقف های مشابه زمان زیادی نیاز دارد
2:اجرای سقف تیرچه و بلوک نیاز به نیروی ماهر و متخصص دارد که متاسفانه به این موضوع اهمیت چندانی داده نمی شود
3: و بزرگترین عیب این سقف این است که در دهانه های بزرگ نمی توان استفاده گردد

جدول ارتفاع بلوک و ضخامت سقف

ضخامت سقف ارتفاع بلوک
۲۵ ۱۸
۳۰ ۲۲

۳۵ ۲۶

نکات مربوط به تیرچه ها:
نکته 1: اندازة عرض تیرچه ها 8تا 12 سانتیمتر است.
نکته 2: ضخامت تیرچه ها معمولا 4 سانتیمتر است.
نکته 3: پس ازبتن ریزی تیرچه ها آن را بوسیله ویبراتور خوب ویبره کنیم.
نکته 4: بتن داخل قالب فلزی یا سفالی جهت ساخت تیرچه با عیار 400تا500کیلوگرم سیمان در متر مکعب بتن ریز با مصالح سنگی ریزدانه تهیه شود.
نکته 5:فاصله محوروسط تا محوروسط تیرچه دیگر معمولا 50سانتیمتر شود.

سقف تیرچه و بلوک

پاره ای از محدودیت ها و ویژگیهای فنی سقف تیرچه و بلوک شامل تیرچه پیش ساخته نیز می شود. در زیر ویژگیهای مهم اجزای تشکیل دهنده خود تیرچه ، مورد بحث قرار می گیرد. تیرچه پیش ساخته از قسمت های زیر تشکیل می یابد :

1-1 عضو کششی

1-2 میلگردهای عرضی

1-3 میلگرد بالائی

1-4 بتن پاشنه

عضو کششی

حداقل تعداد میلگرد کششی دو عدد بوده و سطح مقطع میلگردهای کششی از طریق محاسبه تعیین می شود . در هر صورت ، سطح مقطع میلگرد کششی برای فولاد نرم ، از 0.0025 ، و برای فولاد نیم سخت و سخت ، از 0.0015 برابر سطح مقطع جان تیر نباید کمتر باشد . توصیه می شود قطر میلگرد کششی از 8 میلیمتر کمتر و از 16 میلیمتر بیشتر نباشد. در مورد تیرچه هایی که ضخامت بتن پاشنه آنها 5.5 سانتیمتر یا بیشتر باشد ، می توان حداکثر قطر میلگرد کششی را به 20 میلیمتر افزایش داد. برای صرفه جویی در مصرف فولاد و پیوستگی بهتر آن با بتن ، معمولا از میلگرد آجدار ، به عنوان عضو کششی استفاده می شود. حداکثر سطح مقطع میلگردهای کششی ، بستگی به نوع فولاد و بتن مصرفی دارد و نباید از مقادیر مندرج در جدول زیر بیشتر باشد.

حد جاری شدن فولا بر حسب

کیلوگرم بر سانتیمتر مربع

200

3600

4200

تاب فشاری بتن 250 کیلوگرم بر سانتیمتر مربع

3.4%

2.98%

2.1%

تاب فشاری بتن 300 کیلوگرم بر سانتیمتر مربع

4.2%

3.7%

2.6%

تاب فشاری بتن 350 کیلوگرم بر سانتیمتر مربع

4.85%

4.24%

3%

مقادیر بالا بر حسب درصد سطح مقطع جان تیر است.

نکته بسیار حائز اهمیت اینست که در عمل باید از تطبیق مقاومت میلگردهای مورد استفاده با مقاومت قید شده در جدولها و محاسبات اطمینان حاصل کرد.

در صورت استفاده از میلگردهای کششی به تعداد بیش از دو عدد ، دو میلگرد طولی باید در سرتاسر طول تیرچه ادامه یابند ، ولی طول مورد نیاز بقیه میلگردها را می توان با توجه به نمودار لنگر خمشی محاسبه و در مقطعی که مورد نیاز نیست ، قطع نمود.

فاصله آزاد بین میلگردهای کششی نباید از قطر بزرگترین دانه شن بتن مورد مصرف در پاشنه تیرچه به اضافه 5 میلیمتر کمتر باشد.

فاصله میلگرد کششی از لبه جانبی بتن پاشنه تیرچه ، به شرط وجود بلوک ، نباید از 10 میلیمتر کمتر باشد و فاصله آزاد میلگرد کششی از سطح پائین تیرچه ( پوشش بتنی روی میلگرد ) نباید از 15 میلیمتر کمتر باشد . در صورتی که از کفشک ( قالب سفالی ) استفاده شود ، فاصله آزاد میلگرد کششی از قسمت بالائی کفشک نباید از 10 میلیمتر کمتر باشد.

پوشش روی میلگردها که در بالا شرح داده شد ، مربوط به تیرچه های مورد استفاده برای فضاهای داخلی ساختمانهاست. در صورتی که این تیرچه ها در محیط های باز ، مانند بالکن یا در فضاهایی که دارای مواد زیان آور برای بتن می باشند ، ادامه یابند ، اجرای یک لایه اندود ماسه سیمان پر مایه به ضخامت حداقل 15 میلیمتر در زیر پوشش ، ضروری است. در ساختمانهائی که خورندگی فراگیر است یا در اقلیمهای خورنده باید حداقل ضخامت پوشش بتنی روی میلگردها رابه 30 میلیمتر افزایش داد.

میلگردهای عرضی

این میلگردها جهت منظورهای زیر در تیرچه منظور می شوند:

  1. تامین اینرسی (=لختی ) لازم جهت مقاومت تیرچه در هنگام حکل و نقل.
  2. تامین مقاومت لازم جهت تحمل بار بلوک و بتن پوششی در بین تکیه گاه های موقت ، پیش از به مقاومت رسیدن بتن.
  3. جهت تامین پیوستگی لازم بین تیرچه و بتن پوششی ( درجا )
  4. تامین مقاومت برشی مورد نیاز تیرچه.

برای میلگردهای عرضی از نوع فولاد نرم و نیم سخت استفاده می شود که بصورت مضاعف یا منفرد تولید می شوند.

سطح مقطع میلگردهای عرضی نباید از 0.0015bw.t کمتر اختیار شود که bw عرض جان مقطع و t فاصله دو میلگرد عرضی متوالی است.قطر میلگردهای عرضی از 5 میلیمتر تا 10 میلیمتر تغییر می کند ، و در هر حال ، حداقل قطر برای خرپای با میلگردهای عرضی مضاعف 5 میلیمتر ، و برای خرپای با میلگرد عرضی منفرد، 6 میلیمتر است. در مورد خرپای ماشینی ، میلگردهای عرضی به طور مضاعف و از نوع نیم سخت می باشند. قطر میلگردهای عرضی این نوع خرپاها بین 4 الی 6 میلیمتر تغییر می کند.

حداقل زاویه میلگرد عرضی نسبت به خط افق ، 30 درجه است و معمولا از 45 درجه کمتر نیست. ارتفاع خرپای تیرچه معمولا با توجه به ضخامت سقف ، که خود تابعی از دهانه مورد پوشش است ، تعیین می شود. فاصله میلگردهای عرضی متوالی در تیرچه ها ، حداکثر 20 سانتیمتر است.

در بعضی از انواع تیرچه ها ، به جای میلگرد عرضی ، از ورق خم کاری شده با تسمه استفاده می شود.

میلگرد بالائی

از میلگرد بالائی ( میلگرد ساده یا آجدار ) به منظور تحمل نیروی فشاری خرپا در مرحله اول باربری تیرچه استفاده می شود و قطر آن با توجه به نوع میلگرد و طول دهانه ، فاصله تیرچه ها ، ارتفاع خرپای تیرچه و ضخامت بتن پوششی ، همچنین فاصله های جوشکاری عرضی ، از 6 تا 12 میلیمتر متفاوت است

در بعضی از انواع تیرچه ها ، از تسمه یا ورق به جای میلگرد بالایی استفاده می شود. جدول زیر به عنوان راهنمای تعیین میلگرد بالائی تیرچه های غیر ماشینی توصیه می شود:

تا دهانه 3 متر

6 میلیمتر

دهانه 3 متر تا 4 متر

8 میلیمتر

دهانه 4 متر تا 5.5 متر

10 میلیمتر

دهانه 5.5 متر تا 7 متر

12 میلیمتر

میلگرد کمکی اتصال : این میلگرد ، به منظور مهار کردن میلگردهای کششی و امکان استقرار بیش از دو میلگرد کششی در ناحیه پاشنه تیرچه ، به کار برده می شود.

قطر میلگردهای کمکی اتصال ، 6 میلیمتر و طول آنها در حدود فاصله میلگردهای کششی است. میلگردهای کمکی اتصال در فواصل 40 تا 100 سانتیمتری از یکدیگر نصب می گردند. در بعضی از کارخانه های تولید تیرچه که جهت قالب بتن پاشنه از ناودانی استفاده می شود ، معمولا بتن پاشنه تا انتهای میلگرد کششی ادامه می یابند. در این موارد ، بهتر است میلگرد کمکی در فاصله 12 سانتیمتری از دو انتهای میلگرد کششی نصب شود تا هنگام اجرای سقف ، و در صورت شکستن دو سر تیرچه جهت نمایان شدن میلگردهای کششی ، خرپا صدمه نبیند.

جوشکاری : اتصال میلگردهای عرضی و اعضای بالایی و زیرین خرپای تیرچه ، معمولا توسط نقطه جوش تامین می گردد. البته می توان از هر نوع عمل جوشکاری مناسب ، جهت اتصال اعضای خرپا استفاده کرد ، مشروط بر آنکه در مرحله جوشکاری ، از سطح مقطع اعضای خرپای تیرچه کاسته نشود ، مشخصات مربوط به جوشکاری باید مطابق آئین نامه های معتبر داخلی یا خارجی باشد.

بتن پاشنه

حداقل عرض بتن پاشنه 10 سانتیمتر است و نباید از ( 3.5/1 ) برابر ضخامت سقف کمتر باشد. ارتفاع بتن پاشنه باید به میزانی باشد که قابل بتن ریزی بوده و پوشش بتن روی میلگرد را جهت ایجاد مقاومت در برابر آتش سوزی تأمین نماید و همچنین پس از قرار گرفتن بلوک با سطح زیری تیرچه همسطح گردد. معمولا ضخامت بتن پاشنه 4.5 تا 5.5 سانتیمتر و عرض آن 10 تا 16 سانتیمتر است.

پاشنه پس از جاگذاری خرپا در قالب فلزی یا در قالب دایمی سفالی ( کفشک ) بتن ریزی می گردد. بتن پاشنه نقش بسیار مهمی در نحوه اجرای سقف دارد. چنانچه سطوح افقی و عمودی تیرچه ، در امتداد طولی انحنا داشته باشند ، جاگذاری بلوکها با مشکلاتی مواجه خواهد گشت. نشمینگاه بلوک باید صاف و یکنواخت باشد تا بلوکها به طور یکنواخت در محل خود قرار گیرند و سطح زیرین سقف برای نازک کاری بعدی مناسب گردد.

حداقل تاب فشاری بتن پاشنه ، 250 کیلوگرم بر سانتیمتر مربع است. مواد تشکیل دهنده مخلوط بتن برای یک متر مکعب بتن پاشنه تیرچه به شرح زیر توصیه می شود :

شن و ماسه تا 12 ( تا 12 میلیمتر ) 1200 لیتر

سیمان 300- 400 کیلوگرم

پس از بتن ریزی پاشنه ، باید مراقبت های لازم جهت نگهداری و مرطوب نگهداشتن بتن معمول گردد. نوع بتن و ضخامت پوشش بتنی روی میلگردهای کششی ، تأثیر زیادی در مقاومت سقف در مقابل آتش سوزی دارد. در صورتی که بتن پاشنه تیرچه معیوب و شکسته باشد، باید آن تیرچه را از محل عیب به دو تیرچه کوتاهتر تقسیم نمود، و یا نسبت به خرد کردن کامل بتن پاشنه و بتن ریزی مجدد آن اقدام کرد.

در صورت استفاده از قالب فلزی و عدم استفاده از کفشک، تیرچه بتن ریزی شده را می توان، بسته به شرایط حرارت محیط پس از 24 تا 48 ساعت از قالب خود جدا کرد. هنگام بتن ریزی پاشنه تیرچه باید به دقت خرپا داخل قالب فلزی یا کفشک قرار گیرد و میلگرد کششی در تمام طول تیرچه به طور یکسان و طبق ویژگیهای یاد شده رعایت شود. معمولا بتن تیرچه در مدت 10 روز پس از بتن ریزی به مقاومت عملی (working strength) خود می رسد.

مشخصات مواد افزودنی جهت زود گیر کردن و ایجاد کارائی بیشتر باید مطابق آئین نامه های معتبر داخلی یا بین المللی باشد


آجر و بلوک های بتنی

قسمتی از سولفات‌ها در گرمای زیاد کوره به SO3 و اکسید فلزی تجزیه شده و SO3 آنها به همراه گازها و بخارهای کوره از آن خارج می‌شود، ولی آنچه باقی می‌ماند پس از مصرف آجر، آب می‌مکد و به صورت H2SO4 در می‌آید که به آجر آسیب می‌رساند
دسته بندی عمران
بازدید ها 1
فرمت فایل doc
حجم فایل 61 کیلو بایت
تعداد صفحات فایل 54
آجر و بلوک های بتنی

فروشنده فایل

کد کاربری 2106
کاربر

آجر و بلوک های بتنی

مقدمه و تاریخچه

آجر از قدیمی‌ترین مصالح ساختمانی است که قدمت آن بنا به عقیده برخی باستان‌شناسان به ده هزار سال پیش می‌رسد ولی این امر هنوز به اثبات نرسیده است. در ایران بقایا کوره‌های سفال‌پزی و آجر‌پزی در شوش و سیلک کاشان که تاریخ آنها به هزاره چهارم پیش از میلاد می‌رسد پیدا شده است و نیز نشانه‌هایی از تولید و مصرف آجر در هندوستان به دست آمده که حاکی از سابقه شش هزار ساله آنست. ساختمان برج بابل که از اجر بنا شده مربوط به 5000 سال قبل بوده و امروزه بقایای آن موجود است. از آجرهای ویرانه‌های یکی از شهرهای بابل در برخی ساختمان‌های شهرهای بغداد و تیسفون استفاده شده که مربوط به 600 سال قبل از میلاد می‌باشد.

واژه آجر ( معرب آگور فارسی ) بابلی است و نام خشت‌هایی بوده که بر روی آنها منشورها (فرمان‌ها)، قوانین (دادها) و نظایر آنرا می‌نوشته‌اند. گمان می‌رود نخستین بار از پخته شدن خاک دیواره‌ها و کف اجاق‌ها به پختن آجر پی‌برده باشند. کوره‌های آجر پزی ابتدائی نیز بی گمان از مکان هایی تشکیل می شده است که در آن لایه های هیزم و خشت متناوباً روی هم چیده می شده است( شکل 2-1) در ایران باستان ساختمان های بزرگ و زیبایی بنا شده اند که پاره ای از آنها هنوز پا برجا هستند، نظیر طاق کسری در غرب ایران قدیم، عراق فعلی بعدها نیز ساختمان هایی مانند آرامگاه شاه اسماعیل سامانی، گنبد کاووس و مسجد جامع اصفهان را با آجر ساختند. پل ها و سدهای قدیمی را نیز با آجر بنا می کرده اند که از آنها می توان پل های دختر، سد کبار در قم و غیره را نام برد.

فن استفاده از آجر از آسیای غربی به سوی غرب به مصر و سپس به روم و به سمت شرق هندوستان و چین رفته است. در سده چهارم میلادی اروپاییان شروع به استفاده از آجر کردند ولی پس از مدتی از رونق افتاده و رواج مجدد آن از سده 12 میلادی بوده که ابتدا از ایتالیا شروع شده و بعد فرانسه و سپس آلمان و آخر سر کشورهای دیگر از آن در بناهای خود بهره برده اند.

در ایران هر جا سنگ کم بوده و خاک خوب هم در دسترس بوده است آجرپزی و مصرف آجر معمول شده است. اندازه آجر زمان ایلامی (مربوط به چغازنبیل) حدود 10*38*38 سانتیمتر بود. پختن و مصرف آجر در زمان ساسانیان گسترش یافته و در ساختمان های بزرگ مانند آتشکده ها به کار رفته است،‌ اندازه آجر این دوره حدود 44*44*7 تا 8 سانتی متر بود. بعدها اندازه آجر به 20*20*3 تا 4 سانتی متر کاهش یافت و مدت زمان مدیدی این آجرها تهیه و در دیوارها و سقف ها مصرف می شدند ولی برای فرش کف آجرهای بزرگ تری به نام ختائی به ابعاد حدود 5*25*25 سانتی متر و باز هم بزرگ تر به نام نظامی به اندازه های حدود 5*40*40 سانتی متر تولید می شد، آجر بزرگ را به فارسی تاوه می گویند.

پیش از جنگ جهانی اول روس ها در ساختن قزاق خانه ها آجرهایی به ابعاد حدود 5×10×20 سانتی متر مصرف می کردند و از این رو آنرا آجر قزاقی نام گذاری کردند که به روش سنتی تهیه می شد. پس از جنگ جهانی دوم روش تولید آجر در ایران دگرگون گردید و روش های صنعتی کم کم جانشین روش هاس سنتی شدند و کارخانه های زیادی احداث شدند که امروزه قادر به تولید انواع آجرها توپر،‌سوراخ دار،‌بلوک های دیواری و سقفی توخالی و اشکال هندسی مختلف هستند وگر چه امروزه کیفیت آجر به علت پیشرفت تکنولوژی پخت و تولید در صد ساله اخیر بهبود یافته ولی در اساس کار تغییر چندانی رخ نداده است. شناخت کامل تر مواد اولیه و ویژگی آنها ،‌کوره های بهتر و با بازدهی بیشتر،‌و کنترل پخت و ماشین آلات بهتر کمک شایان توجهی به توسعه و پیشرفت صنعت تولید آجرنموده است.

مواد اولیه

آجر نوعی سنگ مصنوعی است که از پختن خشت خام و دگرگونی آن بر اثر گرما به دست می آید. خشت خام را از خاک نمناک یا گل تهیه می کنند که مخلوطی از خاک و کمی آب است. خاک آجر مخلوطی است از خاک رس،‌ماسه، فلد سپات ها، سنگ آهک، سولفات ها،‌سولفورها،‌فسفات ها،‌کانی های آهن،‌منگنز، میزیم، سدیم،‌پتاسیم، مواد آلی گیاهی و غیره.

خاک رس

ماده اصلی تشکیل دهنده خاک آجر،‌خاک رس است که فرمول شیمیایی آن هیدروسیلیکات آلومینیوم بوده و از پوسیدن و تجزیه فلد سپات ها یا فلد سپارها و

میکاها تحت تأثیر اسید کربنیک موجود در آب باران به وجود آمده است، فرمول شیمیایی این فلدسپات‌ها و میکاها به شرح زیر است:

فلد سپات پتاسیمی

(اورتوکلاس)

فلد سپات سدیمی

(پلاژیوکلاس)

فلد سپات کلسیمی

(آنورتایت)

میکای پتاسیمی

میکای سدیمی

سیلیکات آلومینیوم سنگ‌های آذری تحت تأثیر عوامل شیمیایی به صورت خاک رس پولکی و کوارتز آنها به واسطه تغییرات فیزیکی به شکل لای و ماسه در آمده‌اند.

خاک رس به دو صورت آبرفته یا سطحی، و معدنی یا عمقی وجود دارد. علاوه بر آن انواع سنگ رسی نیز از دگرگون شدن خاک رس تحت فشار به وجود می‌آید که به نام شیست و شیل نامیده می‌شوند. این سه شکل اصلی خاک رس از نظر شیمیایی مشابه یکدیگرند، ولی به لحاظ فیزیکی ویژگی‌های متفاوتی دارند. خاک رس‌های آبرفتی بسته به جنس بستر و طول مسیری که جابه‌جا شده‌اند دارای جنس‌های گوناگون بوده و ویژگی‌های فیزیکی و شیمیایی آنها متفاوت است و به صورت‌های خاک آجر، خاک سرامیک، خاک نسوز، و غیره ته‌نشین شده‌اند.

خاک رس معدنی خالص‌تر و از لحاظ فیزیکی و شیمیایی همگن‌تر است. از مهم‌ترین ویژگی‌های آن پایداری در برابر دماهای زیاد است.

خاک رس خالص، بی‌رنگ است ولی خاک نباتی یا FeO آنرا کبود،‌ Fe2O3 آنرا سرخ، هیدروکسید آهن آن را زرد، گرد زغال سنگ بسته به نوع زغال آنرا از قهوه‌ای تا سیاه می‌کند. خاک رس‌ها موادی با ترکیب شیمیایی پیچیده هستند ولی مبنای آنها ترکیبی از سیلیس و آلومین با مقادیر متغیری از اکسید‌های فلزی و سایر مواد می‌باشند. آنها را می‌توان برحسب ترکیب شیمیایی به دو گروه خاک رس‌های آهکی و غیر‌آهکی تقسیم‌بندی نمود. خاک رس های آهکی دارای حدود 15 درصد کربنات کلسیم بوده و پس از پختن به رنگ بهی در می‌آیند. خاک رس های غیرآهکی مرکب از سیلیکات آلومینیوم و فلد سپات و اکسید آهن هستند. مقدار اکسید آهن متفاوت بوده و از 2 تا 10 درصد تغییر می‌کند. این دسته از خاک رس‌ها پس از پختن به رنگ‌های نخودی، قرمز، یا عنابی روشن در می‌آیند که بیشتر مربوط به مقدار اکسید آهن است.

معمول‌ترین کانی‌های خاک رس‌ عبارتند از مونت مورینولیت، ایلیت و کائولینیت. بنتونیت دارای مقدار زیادی مونت مورینولیت و کمی بیدلیت است و از این رو چسبندگی، شکل‌پذیری و آماسیدن آن زیاد است. ضخامت پولک‌های مونت مورینولیت (Al2O3, 4SiO2, H2O +n H­2O ) یک هزارم میکرون و طول آنها 100 تا 200 هزارم میکرون می‌باشد، دارای دو لایه Si در دو طرف یک لایه Al است و از این رو خاصیت جذب آب آن بیش از کائولینیت بوده و دو برابر آن یون می‌سازد. بنتونیت پتاسیمی 2 تا 3 برابر و بنتونیت سدیمی 6 تا 7 برابر وزنش آب می‌مکد.

بنتونیت در صنایع سرامیک سازی، ریخته‌گری، پالایش نفت، آب‌بندی‌ سدها، صاف کردن و بی‌رنگ مواد غذایی و دارویی و آشامیدنی، کاغذ سازی، صابون سازی، تصفیه آب، رنگ‌سازی، ساختن آجر‌نسوز، گل حفاری، امولسیون‌ها، حشره‌کش‌ها و کرم‌های آرایشی و مرکب داخل‌ قلم‌های خودکار و نظایر آن مصرف می‌شود.

ایلیت نام خاصی برای کانی‌های رس نیست ولی اصطلاحی عمومی برای کانی‌های خاک رس میکائی است که معمولاً در مورد هر نوع کانی رسی که آماس کردنی نباشد به کار می‌رود. ایلیت در ساخت محصولات رسی پخته ساختمانی نظیر کاشی و آجر به کار می‌رود، برخی ایلیت‌ها که خاصیت خمیری دارند برای چسباندن ماسه ریخته‌گری به کار گرفته می‌شوند.

کائولینیت با فرمول شیمیایی Al2O3, 2SiO2 , 2H2O است که ضخامت پولک‌های آن 20 هزارم میکرون و طول آنها 100 تا 250 هزارم میکرون بوده و به اندازه وزنش آب می‌مکد. دمای ذوب آن 1750 درجه سیلسیوس است. در گرمای 800 درجه چسبناکی خود را از دست داده و به Al2O3 , 2SiO­2 تبدیل می‌شود که می‌توان برای جداسازی Al2O3 آن، آن را در اسید کلریدریک حل کرد.

کائولین Al2o3, 2SiO2 nH2O که به خاک. چینی معروف است، چون آن را از تپه‌ای به اسم Kao –ling به معنای «تپه بلند» در شرق فولیانگ Fou – liang استخارج کرده و در چینی‌سازی مصرف می‌کرده اند به این نام شهرت یافته است (صادرات خاک چینی به اروپا نیز در اوایل از این منطقه بوده است). کائولین مشتمل است بر کانی‌های کائوولینیت، نکریت، دیکیت، آنوکست، با یک بلوردو لایه‌ای که در آن صفحات سیلیس و هیدرواکسید آلومینیوم به طور متناوب قرار گرفته‌اند. خاک رس آب می‌مکد و پس از گل شدن آماس می‌کند و فضاهای خالی آن پر می‌شود، از این رو تا موقعی که به صورت‌ تر باقی بماند می‌توان آنرا برای آب‌بندی مصرف کرد. خاک رس خشک چسبندگی ندارد ولی پس از مکیدن آب، چسبنده می‌شود، اما پس از آنکه کاملاً سیراب شد چسبندگی خود را از دست می‌دهد، بنابراین برای پاک کردن گل رس از اشیاء یا باید آنرا خشک کرد و تکان داد یا به اندازه‌ای خیس کرد که کاملاً سیراب شده و از آنها جدا شود.

چسبندگی گل رس به خاطر کشش مولکولی است و کشش مولکولی بین پولک‌های خاک رس و لعابی از آب که به ضخامت 6 تا 8 هزارم میکرون دور تا دور پولک‌ها را اندود کرده است حدود 200 N/mm2 می‌باشد. این لعاب سطح پولک‌ها را لیز می‌کند، به قسمی که کوچک‌ترین نیرو سبب لغزش آنها روی یکدیگر می‌شود و شکل‌پذیری گل رس به خاطر این مطلب است.

خاک نسوز

خاک نسوز را به انگلیسی Fire clay یا Chamotte نامیده‌اند و نام دیگر آن گل آتشخوار است. خاکی است که در دمای 1580 درجه سلسیوس ذوب نمی‌شود. کم‌ترین دمای ذوب مخلوط‌های سلیس و رس 1580 درجه سلسیوس است که از 94 درصد گرد سیلیس SiO2 و 6 درصد گرد آلومین Al2O3 تشکیل شده و در صورت تغییر نسبت این دو ماده دمای ذوب افزایش می‌یابد. به این جهت دمای 1580 درجه از مرز بین خاک‌های نسوز و غیر نسوز قرار داده‌اند.

خاک رس‌‌هایی که هیدروسیلیکات آلومینیوم آنها زیاد باشد نسوز هستند.

ماسه

یکی دیگر از موادی که در خاک آجر یافت می‌شود ماسه است. کوارتز سنگ‌های آذری پس از پوسیدن تبدیل به ماسه و لای می‌گردد، بنابراین در همه خاک‌ها و کم‌وبیش ماسه و لاس یافت می‌شود. کوارتز خالص یا در کوهی بی‌رنگ و شفاف است. توپاز کوارتز قهوه‌ای است که قیر دارد، منگنز، کوارتز را به رنگ زرد لیموئی یا بنفش در می‌آورد، سیلیکات آبدار نیکل آنرا به رنگ سبز در می‌آورد عقیق کوارتز بی‌شکل و غیر بلوری است که به رنگ‌های سرخ، سیاه و سبز پیدا می‌شود. سنگ آتش زنه چخماق یا Opal هیدروکسید سیلیسیوم است. سنگ فلزات، اکسید آلومینیوم خالص Al2O3 است که وجود کروم در آن رنگش را سرخ کرده است.

ماسه، استخوان‌بندی خشت است، اگر مقدار آن در خاک آجر زیاد باشد مقدار خاک رس کم شده و در نتیجه جری که از این خاک پخته شود ترد و پوک و کم مقاومت می‌شود. اگر ماسه سیلیسی یا سیلیکاتی درشت در خشت باشد، حجم آن هنگام افزایش دما زیاد می‌شود، از طرفی خشت به هنگام پختن جمع شده و چون این دو پدیده در خلاف جهت و مغایر یکدیگرند در اطراف دانه سنگ در آجر ترک‌های موئی پیدا می‌شود، از این رو خاک آجر را باید آسیاب کرده و سنگ‌های درشت آنرا با سرند کردن خارج کرد.

فلداسپات

فلداسپات در خاک آجر به صورت عامل گداز آور عمل می‌کند و گرمای خمیری شدن آجر را تا 1100 الی 1150 درجه سیلسیوس پایین می‌آورد، از این رو پختن سرامیک یا خاک فلداسپات دار، ارزان‌تر تمام می‌شود.

سنگ آهک

اگر مقدار سنگ آهک در خاک آجر کم، و به شکل گرد باشد آجر را سفید رنگ می‌کند و به آن صدمه‌ای نمی‌زند، ولی اگر مقدار آن زیاد باشد دمای خمیری شدن خاک را پایین می‌آورد و آجر در گرمای کوره، خمیری و جوش می‌شود، بنابراین مقدار آن در خاک خشت به 30% محدود شده است. اگر سنگ آهک به صورت دانه درشت در خاک آجر موجود باشد پس از پختن خشت سنگ نیز پخته شده و به صورت CaO در می‌آید که این CaO پس از مکیدن آب ملات یا آب‌های نشت‌کننده می‌شکفد و آجر را می‌ترکاند. از این رو در خاک آجر نباید سنگ آهکی درشت وجود داشته باشد.

سولفات‌ها

سولفات‌ها به صورت سولفات‌های کلسیم، منیزیم، پتاسیم، سدیم، به شکل دانه درشت و گرد، کم و بیش در خاک آجر یافت می‌شوند. سولفات‌ها در موقع آسیاب کردن خاک به شکل گرد در می‌آیند و پس از مصرف شدن، آب ملات یا آب‌های نشت‌کننده دیگر را مکیده و به صورت سفیدک یا شوره در نمای ساختمان‌ها رو می‌زنند.

قسمتی از سولفات‌ها در گرمای زیاد کوره به SO3 و اکسید فلزی تجزیه شده و SO3 آنها به همراه گازها و بخارهای کوره از آن خارج می‌شود، ولی آنچه باقی می‌ماند پس از مصرف آجر، آب می‌مکد و به صورت H2SO4 در می‌آید که به آجر آسیب می‌رساند.

سولفات‌های محلول به همراه آب‌های نشت‌کننده در ملات آجر کاری نفوذ کرده و با تری کلسیم آلومینات موجود در سیمان‌های پرتلند معمولی ترکیب شده و کلسیم سولفوآلومینات یا اترینجیت ایجاد می‌شود که با انبساط همراه است و سبب خرد شدن ملات آجر کاری می‌شود. گاهی اوقات ورقه ورقه شدن سطح آجر‌ها با پیشرفت حمله سولفات همراه است که معمولاً یک اثر ثانویه به دلیل انتقال بار اضافی بر روی ردیف خارجی آجر کاری است که به نوبت بر روی سطوح خارجی آجرها یعنی جائی که بندها بیشترین انبساط را پیدا کرده‌اند متمرکز می‌شود. ورقه ورقه شدن سطح آجرهای پوک و نیم پخته به دلیل تبلور سولفات‌ها در پشت رویه می‌باشد.

املاح آهنی

سولفور آهن FeS2 در کوره تجزیه و به SO3 و اکسید آهن تبدیل می‌گردد. اگر SO3 با اکسیدهای فلزی همانند MgO، CaO، K2O، Na2O ترکیب شود سولفات به وجود می‌آید که نقش آن در آجر ذکر شد. اکسید آهن در آجر، کارگداز آور را انجام می‌دهد، اگر Fe2O3 در خاک آجر به 5 درصد وزن آن برسد، دمای ذوب را کاهش می‌دهد و رنگ آجر نیز سرخ می‌شود و به این سبب در آجر نسوز مقدار آن محدود شده است. این نوع خاک برای ساختن لوله سفالی یا تنبوشه که نم نمی‌کشد و آب از آن نفوذ نمی‌کند مناسب است. در گرمای کم کوره، اکسید آهن به صورت FeO است که رنگ آن کبود چرک است و از این رو آجرهایی که در گرمای کم پخته شده باشند و به اصطلاح نیم پخته باشند به این رنگ در می‌آیند. وجود املاح آهن سبب کم شدن نفوذ‌پذیری آجر و دوام آن می‌شود.

منیزیم نیز در رنگ آجر تأثیر می‌گذارد.

مواد گیاهی

مواد گیاهی موجود در خاک آجر در کوره می‌سوزند و جای آنها خالی می‌ماند و آجر پوک می‌شود.

قلیائی‌ها

قلیائی‌ها به عنوان گدازآور عمل می‌کنند و همچنین سبب شوره‌زدگی آجر می‌شوند. طبق استاندارد ملی ایران به شماره 1162 ترکیب خاک مناسب برای آجرپزی باید به شرح ذیل باشد:

ویژگی‌های شیمیایی

1- کاهش وزن در دمای سرخ شدن 1000 درجه سیلسیوس، نباید از 16 درصد تجاوز نماید.

2- مقدار انیدرید کربنیک CO2 موجود در خاک رس نباید از 5/8 درصد تجاوز کند.

3- درصد انیدرید سولفوریک SO3 نباید از 5/0 درصد تجاوز کند.

سیلیس (SiO2) از 40 تا 60درصد

آلومین (Al2O3 ) از 9 تا 21 درصد

اکسید آهن (Fe2O3 ) از 3 تا 12 درصد

اکسید کلسیم (CaO) حداکثر 17 درصد

اکسید منیزیم (MgO) حداکثر 4 درصد

ویژگی‌های فیزیکی

1- دانه‌بندی: باقی مانده روی الک 149 میکرون یا نمره 100، نباید از 5/7 درصد تجاوز نماید.

2- حد حالت خمیری (P.L) خاک از 17 تا 30 درصد باشد.

مراحل ساخت آجر

مراحل ساخت آجر عبارتند از:

الف) استخراج و کندن مواد خام

خاک‌های رسی بیشتر در عمق کم واقع شده‌اند، ولی برخی از خاک‌های نسوز را باید از عمق بیشتری استخراج کرد. عمل کندن خاک با وسائل دستی یا ماشینی صورت می‌گیرد و سپس به وسیله کامیون و در کارخانه‌های بزرگ توسط ریل و واگون به کارخانه حمل می‌شود. خاک سطحی که نباتی است کنار زده می‌شود و ریشه گیاهان و سنگ‌های درشت را نیز از خاک جدا می‌کنند، سپس چنانچه کلوخه‌های درشتی در خاک موجود باشد آنها را می‌شکنند و خاک حاصله، توسط تسمه نقاله به سمت بالا هدایت شده و به انبار می‌رود. در محل انبار است که خاک های رسی را که از نقاط مختلف معدن آورده شده‌اند خوب به هم می‌آمیزند تا تغییرات ویژگی‌های شیمیایی و فیزیکی خاک به حداقل تقلیل یابد. در برخی موارد می‌توان بخشی از مواد اولیه را از فرآورده‌های جنبی عادی دیگر مانند معدن شن و ماسه و بوکسیت و یا تفاله صنایعی مانند ذوب آهن به دست آورد.

برای تولید هر هزار قالب آجر که وزن آنها به 2250 تا 3000 کیلوگرم می‌رسد به استخراج و حمل 4 تا 5 تن مصالح خام نیاز است و از اینجا می‌توان به عظمت و اهمیت کار استخراج و حمل مواد خام در کارخانه‌های بزرگ که تولید آنها به میلیون‌ها قالب می‌رسد پی برد.

ب) آماده سازی مواد خام ( یا ساختن گل)

در روش دستی در خاک آجر آبخوره می‌سازند و در آن آب می‌ریزند و می‌گذارند کم کم آب بخورد خاک رفته و دانه‌های خاک کاملاً خیس شده و خاک به صورت خمیر درآید.

در کارخانه‌های جدید ابتدا سنگ‌ها را از خاک‌ جدا کرده و بعد کلوخه‌های خاک را در سنگ شکن اولیه خرد کرده و اندازه آنها را به حداکثر 50 میلی متر می‌رسانند، سپس آنرا توسط تسمه نقاله‌ای به آسیاب هدایت کرده و در آنجا خاک به صورت گرد در آمده و خوب به هم آمیخته می‌شود. خاک آسیاب شده از میان یرند لرزان عبور داده می‌شود و فقط قسمتی که به صورت گرد در آمده از آن عبور می‌کند و دانه‌های درشت دوباره به آسیاب برگردانده می‌شود تا عمل خرد شدن آنها کاملاً انجام شود. خاک گرد شده به وسیله تسمه نقاله به انبار حمل می‌شود. به خاک گرد شده آب می‌افزایند و آنرا با وسائل ماشینی به هم می‌زنند تا به حال خمیر درآید و گل شود. این عمل معمولاً در آسیاب گل‌سازی انجام می‌شود. مقدار آب بسته به روشی است که برای قالب‌گیری به کار گرفته می‌شود.


تحلیل روسازی انعطاف پذیر

هدف از روسازی راه یا فرودگاه احداث یک سطح صاف و هموار و در عین حال با ایمنی کافی برای استفاده‌کنندگان از راه یا فرودگاه است روسازی باید طوری طراحی و ساخته شود که بتواند وزن وسایل نقلیه را تحمل کند و در هر شرایط جوی قابل استفاده باشد زمین در حالت طبیعی مقاومت کافی برای تحمل بارهای وارد از چرخ‌های وسایل نقلیه سنگین نظیر کامیون‌ها و هواپیماها را ندار
دسته بندی عمران
بازدید ها 0
فرمت فایل doc
حجم فایل 3629 کیلو بایت
تعداد صفحات فایل 102
تحلیل روسازی انعطاف پذیر

فروشنده فایل

کد کاربری 2106
کاربر

تحلیل روسازی انعطاف پذیر

فهرست عناوین

عنوان صفحه

فصل اول ـ مروری بر انواع روسازی....................................................... 16........

1-1- مقدمه................................................................................................. 17

1-2- تأثیر بارگذار و عوامل جوی بر سیستم روسازی............................ 17

1-3- عوامل مؤثر در طرح روسازی‌ها...................................................... 20

1-4- روسازی‌های انعطاف‌پذیر................................................................. 21

1-5- خلاصه و نتیجه‌گیری......................................................................... 22

فصل دوم : کاهش عمر روسازی های انعطاف پذیر در اثر تغییرات شرایط چسبندگی بین لایه ها با توجه به کرنش قائم روی خاک بستر ...................................................................... 23

1- مقدمه .............................................................................................. 24

2- تاثیر بارهای افقی و اصطکاک بین لایه ای به عمر روسازی ها...... 25

3- تحلیل نظریه تاثیر شرایط بین لایه ای ............................................. 26

4- انتخاب مدل و روش تحلیل............................................................... 29

4-1 - مدل هندسی روسازی............................................................... 29

4-2 – بارگذاری.................................................................................... 31

4-3 - مدل تعیین عمر روسازی ها ..................................................... 33

5- تحلیل تاثیر شرایط بین لایه ای مختلف بر روی عملکرد روسازی . 33

5-1- تاثیر اجراء ضعیف اندود تک کت ( حالت اجرایی)....................... 34

عنوان صفحه

5-2- تاثیر کاهش اجراء ضعیف اندود پریمکت ( حالت 3 اجرایی)....... 35

5-3- تاثیر اجرای نامناسب اندودهای بین لایه ای ( حالت 4 اجرایی).. 37

6- خلاصه و نتیجه گیری...................................................................... 39

فصل سوم: روش‌های تحلیل روسازی‌های انعطاف‌پذیر......................... 41

3-1- مقدمه................................................................................................. 42

3-2- حل سیستم‌های لایه‌ای با استفاده از تئوری چند لایه‌ای................... 42

3-1-1- معادلات پایه.................................................................................. 44

3-2-2- شرایط مرزی و پیوستگی............................................................. 47

3-3- حل سیستم‌های لایه‌ای با استفاده از روش اجزاء محدود................. 50

3-4- مقایسه روش چند لایه‌ای با روش اجزاء محدود.............................. 55

3-5- خلاصه و نتیجه‌گیری......................................................................... 58

فصل چهارم: بررسی نر‌م‌افزار Kenlayer جهت تحلیل روساز‌ی‌های انعطاف‌پذیر

4-1- تئوری نرم‌افزار................................................................................. 61

4-1-1- سیستم چند لایه‌ی الاستیک:.......................................................... 61

4-1-2- Super Position و تعیین پاسخ‌ها.............................................. 62

4-1-2-1- تجزیه تنش‌ها به مولفه‌ها x و Y.............................................. 64

4-1-2-2- محاسبه تنش‌های اصلی .......................................................... 65

4-1-2-3- محاسبه کرنش بحرانی............................................................. 65

4-1-3- آنالیز خرابی (Damage Anaysis)............................................. 66

عنوان صفحه

4-1-3-1- معیار بحرانی شکست ترک کششی.......................................... 66

4-1-3-2- معیار بحرانی شکست تغییر شکل حداکثر................................ 67

4-1-3-3- محورهای چندگانه.................................................................... 68

4-1-4- لایه‌های غیرخطی.......................................................................... 70

4-1-4-1- مصالح دانه‌ای........................................................................... 70

4-1-4-1- تقسیم لایه به تعدادی زیر لایه.................................................. 72

4-1-4-1-2- انتخاب نقطه مناسب جهت طراحی........................................ 72

4-1-4-2- مصالح ریزدانه......................................................................... 74

4-1-4-3- نقطه تنش برای لایه غیرخطی................................................... 77

4-2- نکات فنی راجع به Kenlayer........................................................... 79

4-2-1- اطلاعات عمومی نرم‌افزار............................................................. 79

4-2-1-1- مصالح...................................................................................... 79

4-2-1-2- آنالیز خرابی.............................................................................. 81

4-2-1-3- تعداد بازه‌های زمانی در هر سال............................................ 81

4-2-1-4- بارها......................................................................................... 81

4-3- خلاصه و نتیجه‌گیری......................................................................... 82

فصل پنجم ـ بررسی نرم‌افزار (TUPAS) جهت تحلیل روسازی‌های انعطاف‌پذیر

مقدمه........................................................................................................... 85

5-1- تئوری نرم‌افزار................................................................................. 86

عنوان صفحه

5-1-1- سیستم لایه‌ای............................................................................... 87

5-1-2- برهم نهی بارها و تعیین پاسخ‌ها................................................... 87

5-2- نکات فنی............................................................................................ 89

5-3- خلاصه و نتیجه‌گیری......................................................................... 91

فصل ششم ـ مقایسه‌ی عملکرد و نتایج حاصل از نرم‌افزارهای TUPAS و KENLAYER

6-1- مقدمه................................................................................................. 94

6-2- شرح چند مثال................................................................................... 94

6-2-1- شرح مسئله با چرخ منفرد............................................................. 94

6-2-2- شرح مسئله با چرخ چندگانه......................................................... 94

6-3- حل چند مثال...................................................................................... 95

6-3-1- حل مسئله 3 لایه‌ای تحت بارگذاری تک چرخ................................ 95

6-3-2- حل مسئله 3 لایه‌ای تحت بارگذاری ناشی از یک محور سه گانه. 96

6-3-3- حل مسئله 3 لایه غیرخطی ناشی از بارگذاری تک چرخ............... 98

6-4- آنالیز حساسیت............................................................................... 100

6-4-1- آنالیز خطی.................................................................................. 101

6-4-1-1- سیستم سه لایه‌ای.................................................................. 101

6-4-1-2- تاثیر ضخامت لایه.................................................................. 103

6-4-1-3- تاثیر مدول لایه‌ها................................................................... 104

6-4-2- آنالیز غیرخطی............................................................................ 106

عنوان صفحه

فصل هفتم ـ جمع‌بندی و نتیجه‌گیری......................................................... 108

7-1- خلاصه............................................................................................ 109

7-2- نتیجه‌گیری....................................................................................... 111

7-3- پیشنهادات....................................................................................... 111

منابع و مراجع........................................................................................... 113


چکیده

روسازی راه به دلیل قدمت دیرینه‌ای که در جهان و نیز در ایران دارد. همواره از دیرباز مورد توجه مهندسین بوده است. به تدریج و با شکل‌گیری قالب استاندارد برای روسازی‌های انعطاف‌پذیر و صلب، لزوم تهیه برنامه‌های کامپوتری و تحلیل عددی روسازی‌ها جهت صرف زمان کمتر و بررسی دقیق‌تر کاملاً اجتناب‌ناپذیر می‌نمود. در این پروژه سعی بر آن بوده است که روسازی انعطاف‌پذیر آسفالتی تحت اثر بارگذاری قائم در بالای رویه مورد بررسی قرار گرفته و توسط تئوری الاستیسیته و فرض ساده کننده روشش برمیستر جهت مدل لایه‌ای، تئوری ریاضی مربوط بسط داده شده و پایه‌های یک برنامه کامپیوتری براساس آن شکل گرفته است.

نرم‌افزارهایی که با بهره جستن از تئوری لایه‌ای اقدام به تحلیل رفتار خاک و محاسبه تنش‌ها و تغییر مکان‌ها می‌نمایند. همگی ملزم به رعایت فرضیات و قوانین خاص تئوری لایه‌ای هستند. این شرایط بعضاً محدود کننده ممکن است باعث تقریب‌های کوچک و یا بزرگی در جواب‌های نهایی سیستم گردد.

روسازی‌های انعطاف‌پذیر را می‌توان با استفاده از تئوری چند لایه‌ای برمیستر تحلیل کرد. عمده‌ترین فرض تئوری فوق بی‌نهایت بودن هر یک از لایه‌ها در صفحه افقی است در این روش برای محاسبه پاسخ با توجه به فرض مهم تقارن محوری، یک تابع تنش فرض می‌شود که باید معادلات دیفرانسیل سازگاری و همچنین شرایط پیوستگی و مرزی را ارضاء کند. سپس از محاسبه این تابع تنش، می‌توان تنش‌ها و جابه‌جایی‌ها را به دست آورد.

یافتن راه حل ریاضی مناب برای تحلیل روسازی، آشنایی کامل با مفاهیم و فرضیات این روش، انتخاب مناسب پارامترها و متغیرهای مسئله، تدوین پایه‌های نرم‌افزار کامپیوتری جهت ورود اطلاعات این روش ریاضی به کامپیوتر و ساختن یک محیط User friendly برای کنترل ورودی‌های برنامه و ایجاد امکان هر گونه توسعه آتی در پیکره نرم‌افزار اهم از مواردی است که در این پروژه بدان توجه شده است.

پیشگفتار

تحلیل روسازی‌ها مسئله مهمی است که امروز با توجه به گسترش صنعت ساختمان و راهسازی از اهمیت ویژه‌ای برخوردار است. روش‌های متفاوتی برای تحلیل روسازی‌ها تا به امروز ارائه شده‌اند و هر کدام به نوبه خود دارای نقاط قوت و ضعفی هستند. دو روش عمده اصلی در تحلیل این مسائل منطق تئوری لایه‌ای و تئوری اجزاء محدود می‌باشد. بدیهی است که استفاده از هر کدام از روش‌ها ملزم به رعایت فرضیات اولیه و شرایط خاص حاکم بر آن روش خواهد بود. آنچه در این پروژه مورد اشاره قرار گرفته است؛ معرفی دو روش اصلی تحلیل روسازی‌های انعطاف‌پذیر که یکی استفاده از تئوری الاستیسیته و سیستم لایه‌ای و دیگری روش اجزاء محدود می‌باشد و سعی شده است سیستم لایه‌ای و به تبع آن روش بر مسیتر برای حل لایه‌ای با توجه بیشتری بررسی شود و جزئیات بیشتری از الگوریتم ریاضی آن ارائه گردد. روش بر مسیتر برای حل لایه‌ای با توجه بیشتر بررسی شود و جزئیات بیشتری از الگوریتم ریاضی آن ارائه گردد.

در روش بر مسیتر برای پیدا کردن تنش‌ها و تغییر شکل‌ها در محیط لایه‌ای خاک و با فرض نیمه بودن محیط و وجود تقارن محوری، یک تابع تنش انتخاب شده و با در نظر گرفتن شرایط پیوستگی و شرایط مرزی معادلات دیفرانسیل حاصله حل شده و پاسخ‌های مورد نیاز به دست می‌آید.

فرضیات ریاضی حاکم بر این روش و الگوریتم مربوط به آن در فصل سوم این پروژه به تفصیل بیان شده و امکان یک مقایسه نسبی نیز فراهم شده است.

سپس از تشریح این مسائل، نرم‌افزار kenlayer به عنوان یک برنامه کامپیوتری مورد اعتماد که بر پایه تئوری لایه‌ای استوار است، تشریح شده و فرضیات و قابلیت و امکانات متفاوت این نرم‌افزار نحوه حل معادلات و گرفتن پاسخ‌ها، چاپ نتایج، تعریف حالات مختلف بارگذاری‌ها، اصل جمع آثار قوا و سایر مسائل فنی از این قبیل همگی در حوصله این پروژه مورد بررسی تفصیل قرار گرفته است و در انتهای این فصل آشنایی نسبتاً کاملی با این نرم‌افزار به وجود خواهد آمد.

سپس از آشنا شدن با نرم‌افزار kenlayer نرم‌افزاری که در این پروژه مورد بررسی و طراحی قرار گرفته است تشریح شده است این نرم‌افزار که بر پایه‌های تئوری الاستیسیته و سیستم لایه‌ای استوار است دقیقاً از همان منطق ریاضی و الگوریتم استفاده شده در kenlayer بهره برده است.

در طراحی این نرم‌افزار سعی شده است تا با تفکیک بخش‌های مختلف، برنامه به گونه‌ای تدوین شود که امکان اعمال تغییرات در آن همواره وجود داشته باشد. پارامترهای ورودی و خروجی و صفحات ثبت اطلاعات همگی در این قسمت مورد توجه قرار می‌گیرند تعیین تنش‌ها و کرنش‌ها، تعیین حالات مختلف بارگذاری‌ها، مصالح خطی و غیرخطی، از جمله مسائلی هستند که در این نر‌م‌افزار، تعبیه شده و امکان گسترش بخش‌های فوق در آینده برای آن لحاظ گردیده است.

موضوع اصلی این پروژه حاضر تدوین الگوریتم ریاضی جهت تحلیل روسازی انعطاف‌پذیر و در نهایت ارائه یک برنامه کامپیوتری با توجه به روش تحلیل سیستم لایه‌ای است که بتواند با ورود اطلاعات در یک محیط گرافیکی، خروجی‌های مناسب را به دست بدهد.

پروژه حاضر در شش فصل به شرح زیر نگارش شده است:

در فصل اول با عنوان مروری بر انواع روسازی، مروری کلی بر عوامل موثر بر طراحی روسازی شده است و در ادامه انواع روسازی‌های انعطاف‌پذیر و صلب معرفی شده‌اند.

فصل دوم با عنوان کاهش عمر روسازی‌های انعطاف‌پذیر در اثر تغییرات شرایط جنبدگی بین لایه‌ها با توجه به کرنش قائم روی خاک‌بستر.

در فصل سوم با عنوان روش‌های تحلیل روسازی‌های انعطاف‌پذیر، شامل روش چند لایه‌ای روش اجزاء محدود، ارائه شده و این دو روش با یکدیگر مقایسه شده‌اند.

در فصل چهارم با عنوان بررسی عملکرد نرم‌افزار Kenlayer به عنوان یک مرجع مناسب برای تحلیل روسازی انعطاف‌پذیر به روش لایه‌ای، سعی شده است تا در حد نیاز، فرضیات به کار گرفته شده در این نرم‌افزار، تئوری ریاضی، تفکیک حالات مختلف بارگذاری و رفتار خطی و غیرخطی به تفضیل بیان شوند و نحوه ورود اطلاعات به برنامه و نمایش خروجی‌ها در پایان اجرای برنامه به صورت خلاصه مور اشاره قرار گرفته است.

در فصل پنجم با عنوان بررسی نرم‌افزار طراحی شده جهت تحلیل روسازی انعطاف‌پذیر، منطق ریاضی نرم‌افزار، فرضیات اولیه، الگوریتم عملکرد نرم‌افزار، ورودی‌ها و خروجی و نحوه کار بخش‌های مختلف نرم‌افزار به تفکیک مورد بررسی قرار می‌گیرند متغیرهای مورد استفاده در این نرم‌افزار و همچنین ورودی‌ها و خروجی‌ها با توجه به حفظ تشابه با Kenlayer در نظر گرفته شده و تا حد امکان در همان قالب نمایش داده می‌شوند. امکانات متفاوتی از نظر محیط برنامه‌نویسی، توسعه‌های آتی نرم‌افزاری و ..... نیز مورد بررسی قرار می‌گیرند.

در فصل ششم با عنوان مقایسه عملکرد نرم‌افزار طراحی شده و سایر نرم‌افزارهای موجود، امکان مقایسه‌ای فراهم شده است تا جواب‌های به دست آمده از این نرم‌افزار با جواب‌های به دست آمده از نرم‌افزار Kenlayer، تحت بارگذاری‌های مختلف یک چرخ و چند چرخ و نیز رفتار خطی و غیرخطی با لایه‌های مختلفی از روسازی و اساس و زیر اساس مورد بررسی قرار گیرد.

در فصل هفتم با عنوان جمع‌بندی و نتیجه‌گیری.

فهرست علائم و اختصارات

= بردار جابه‌جایی گره

: بردار کرنش

{F}: بردار نیرو

: تابع تنش

:‌ تبدیل هانکل

: تعداد عبور جاز برای شیارشدگی روسازی

: تعداد عبور مجاز برای خستگی بتن آسفالتی

: تنش شعاعی

: تنش برشی

: تنش فشاری

R فاصله نقطه پاسخ تا نقطه تأثیر بار

H کل ضخامت روسازی تا روی خاک بستر

A شعاع چرخ بار معادل

تابع بسل نوع اول درجه صفر

تابع بسل نوع اول درجه یک

A, B, C, D ضرائب لایه‌ای

: کرنش عمودی

: تنش مماسی

U: جابه‌جایی شعاعی

W: جابه‌‌جایی قائم

: ضریب پواستن

TH ضخامت لایه‌های روسازی

: کرنش برشی

: کرنش فشاری

: کرنش کششی

E: مدل الاستیسیته

X: مختصات در جهت X (پلان)

Y : مختصات در جهت Y (پلان)

Z: مختصات در جهت Z (عمق)

: تنش اصل بزرگ

: تنش اصلی متوسط

: تنش اصلی کوچک

: کرنش اصلی بزرگ

: کرنش اصلی کوچک

فصل اول

مروری بر انواع روسازی


1-1- مقدمه

هدف از روسازی راه یا فرودگاه احداث یک سطح صاف و هموار و در عین حال با ایمنی کافی برای استفاده‌کنندگان از راه یا فرودگاه است. روسازی باید طوری طراحی و ساخته شود که بتواند وزن وسایل نقلیه را تحمل کند و در هر شرایط جوی قابل استفاده باشد. زمین در حالت طبیعی مقاومت کافی برای تحمل بارهای وارد از چرخ‌های وسایل نقلیه سنگین نظیر کامیون‌ها و هواپیماها را ندارد و بارگذاری این گونه خاک‌ها موجب شکست برشی خاک و به وجود آمدن تغییر شکل‌های بیش از اندازه در آن می‌شود.

برای جلوگیری از شکست برشی خاک و به وجود آمدن تغییر شکل‌های دائم بیش از اندازه در آن، باید از شدت تنش‌های فشاری قائم بر روی خاک کاسته شود. این عمل با قرار دادن لایه‌ای از مصالح مرغوب و با مقاومت زیاد بر روی خاک انجام می‌شود. جنس و ضخامت این لایه که به روسازی مرسوم است. باید طوری باشد که ضمن آنکه بتواند شدت تنش‌های فشاری قائم را به میزان قابل تحمل خاک بستر روسازی کاهش دهد، خود نیز قادر به تحمل بارهای وارد بر آن باشد.

1-2- تأثیر بارگذاری و عوامل جوی بر سیستم روسازی

شدت تنش‌های فشاری قائم که در اثر بارگذاری در یک توده خاک به وجود می‌آید در نقاط مختلف متفاوت است. شدت این تنش‌ها در نقاط واقع در زیر سطح بارگذاری شده حداکثر است و با افزایش فاصله‌ی این نقاط از سطح بارگذاری شده از شدت تنش‌های فشاری قائم نیز کاسته می‌شود در شکل 1-1 منحنی تغییرات تنش فشاری قائم در یک توده خاک در اثر یک بار یکنواخت با سطح تماس دایره‌ای شکل نشان داده شده است.

با توجه به این اصل در مواردی که ضخامت روسازی زیاد است می‌توان به منظور اقتصادی‌تر کردن ساختمان روساز، آن را از چندین لایه با مقاومت و مرغوبیت‌های متفاوت طرح و اجرا کرد. نحوه قرارگیری متداول لایه‌های روسازی باید به ترتیبی باشد که لایه‌های با مصالح مقاوم‌تر و مرغوب‌تر در لایه‌های بالاتر روسازی قرار گیرند، زیرا در این نقاط شدت تنش‌های فشاری وارد بر روسازی بیشتر است و از مصالح با مرغوبیت و مقاومت کمتر در لایه‌های زیرین که میزان تنش‌ها در آنجا کمتر است استفاده می‌شود.

شکل 1-1- توزیع تنش های قائم در توده خاک

جنس و ضخامت لایه‌های روسازی باید طوری انتخاب شود که ضمن آنکه هر یک از لایه‌ها بتواند در برابر تنش‌های وارد بر آن مقاومت کند، باید قادر باشد که شدت این تنش‌ها را تا میزان قابل تحمل برای لایه‌ای که در زیر آن قرار گرفته است کاهش دهد.

در راه‌های با درآمد و شد زیاد و فرودگاه‌ها لایه‌های بالایی روسازی و بخصوص لایه‌ی رویه، از مصالح قیری و یا سیمانی ساخته می‌شود. در اثر بارگذاری روسازی، این نوع رویه‌ها تغییر شکل داده و در آنها تنش‌های کششی و رفتاری افقی به وجود می‌آید. (شکل 1ـ2)

شکل 1-2- ایجاد تنش های فشاری و کششی در روسازی

هر گاه شدت تنش‌های کششی افقی در لایه روسازی از میزان استقامت کششی مصالح آن لایه بیشتر شود موجب ترک خوردن آن لایه می‌شود. بنابراین جنس و ضخامت لایه‌های روسازی که از مصالح قیری یا سیمانی ساخته می‌شوند باید طوری انتخاب شود که در برابر تنش افقی به وجود آمده در آنها مقاومت کنند و ترک نخورند.

عوامل جوی به خصوص آب، یخبندان و تغییر درجه‌ی حرارت به طور مستقیم و یا غیرمستقیم بر روسازی اثر کرده و موجب خرابی آن می‌شود بنابراین روساز‌ها باید طوری طراحی و ساخته شوند که بتوانند در برابر عوامل جوی مقاومت کرده و خراب نشوند. اگر روسازی به طور صحیح طراحی و اجرا نگردد آب در آن نفوذ کرده و باعث کاهش مقاومت مصالح روسازی و به خصوص خاک بستر آن می‌شود. این امر باعث کاهش قابلیت باربری سیستم روسازی شده و روسازی تحت اثر بارهای وارد خراب می‌شود. اگر ضخامت کل روسازی به طور صحیح انتخاب نشده و روسازی بر روی خاک قابل تورم ساخته شود و احتمال نفوذ آب به زیرسازی وجود داشته باشد، ممکن است در اثر برودت، آب موجود در خاک بستر روسازی یخ زده و تورم شود و سبب خرابی روسازی شود.

تغییرات زیاد درجه حرارت هوا نیز ممکن است موجب خراب شدن روسازی‌ها شود. درجه‌ی حرارت‌های بالا رویه‌های آسفالتی بیش از حد نرم شده و ممکن است در اثر آمد و شد وسایل نقلیه سنگین تغیر شکل بیش از حد بدهند. از طرف دیگر در درجه حرارت‌های پایین این نوع روسازی‌ها منقبض شده و ممکن است ترک بخورند. رویه‌های بتنی نیز در اثر تغییرات درجه حرارت منقبض و یا منبسط می‌شوند که ممکن است منجر به ترک خوردن یا خرد شدن آنها شود. ضمناً‌ تغییرات روزانه درجه حرارت هوا باعث می‌شود که لایه‌ی رویه بتنی تاب برداشته و از حالت مسطح خارج شود و در اثر بارگذاری ترک بخورد.

1-3- عوامل مؤثر در طرح روسازی‌ها

روسازی‌ها معمولاً تحت تأثیر عوامل زیادی قرار دارند و از این نظر طراحی آنها در مقایسه یا طراحی پل‌ها و ساختمان‌ها و سایر ابنیه فنی از پیچیدگی بیشتری برخوردار است. یکی از اشکالات بسیار هم در طراحی روسازی‌ها متغیر بودن عواملی است که در طرح روسازی مؤثرند.

در مورد روسازی‌های انعطاف‌پذیر خاک بستر نقش فوق‌العاده مهمی را در طرح روسازی بازی می‌کند و از این نظر بررسی و مطالعه خاک بستر روسازی باید با دقت بیشتری انجام شود. روسازی‌های صلب که شامل روسازی‌های بتنی هستند روسازی‌هایی هستند که در آنها از یک یا چند لایه با سختی زیاد استفاده می‌شود. این نوع روسازی‌ها بارهای خارجی را بدون تغییر شکل زیاد صفحه بتنی در یک سطح نسبتاً وسیع به خاک بستر روسازی منتقل می‌کنند.

1-4- روسازی‌های انعطاف‌پذیر

روسازی‌های انعطاف‌پذیر را می‌توان با استفاده از تئوری چند لایه‌ای بر میستر تحلیل کرد. عمده‌ترین محدودیت تئوری فوق فرض بی‌نهایت بودن هر یک از این لایه‌ها در صفحه افقی است که تئوری فوق را برای استفاده در روسازی‌های صلبی که دارای درز می‌باشند غیر قابل استفاده می‌کند. به علاوه تئوری فوق در مورد روسازی‌های صلبی که بار در اصله 2 یا 3 فوتی (6/0 الی 9/0 متری) گوشه‌ی آنها اعمال می‌شود نیز نمی‌تواند به کار رود، زیرا این عدم پیوستگی باعث ایجاد تنش‌های بزرگ در لبه‌ها می‌شود.

استفاده از روسازی‌های انعطاف‌پذر سبب می‌شود تا پخش بار به صورت متمرکز و تقریباً‌ در نزدیکی نقاط تأثیر بار انجام شود. در صورتیکه فاصله چرخ از لبه روسازی بیش از 2 فوت باشد، عدم پیوستگی لبه تأثیر بسیار کمی بر روی تنش‌ها و کرنش‌های بحرانی می‌گذارد.

روسازی‌های متعارف انعطاف‌پذیر متشکل از یک سیستم چند لایه‌ای هستند که در قسمت بالای آنها، که مقدار تنش بالاست از مصالح مرغوب‌تر استفاده شده است و در قسمت پایین آنها که مقدار تنش کاهش می‌یابد از مصالح با مرغوبیت کمتر استفاده از روسازی‌های فوق این امکان را به وجود می‌آورد تا بتوان از مصالح محلی استفاده نمود که این مسئله نیز باعث اقتصادی‌تر شدن طرح می‌شود. مورد اخیر به خصوص در مناطقی که صالح با کیفت بالا گران هستند و مصالح با کفیت پایین ارزان، مصداق دارد. شکل 1-3 نشان دهنده‌ی مقطع عرضی یک روسازی متعارف انعطاف‌پذیر است. مصالح به کار رفته در این نوع روسازی از بالا عبارتند از اندود آببندی، لایه‌ی زیر اساس و بستر متراکم شده. به کارگیری هر یک لایه‌ها یا قشرهای ذکر شده بستگی به ملزومات طرح و ملاحظات اقتصادی دارد.

شکل 3-1- مقطع عرضی یک روسازی متعارف انعطاف پذیر

1-5- خلاصه و نتیجه‌گیری

1- روسازی‌ها به دو دسته کلی تقسیم می‌شوند که عبارتند از: روسازی‌های انعطاف‌پذیر و روسازی‌های صلب. روسازی‌های انعطاف‌پذیر را می‌توان با فرض بی‌نهایت بودن لایه‌ها در امتداد افقی، با استفاده از تئوری چند لایه‌ای حل نمود. برای تحلیل روسازی‌های صلب، به دلیل سختی زیاد دال‌های بتنی و همچنین وجود درزه‌ها، بایستی از تئوری صفحه استفاده شود. در صورتی که بار بر بخش داخلی دال اثر کند می‌توان از تئوری چند لایه‌ای برای تحلیل روسازی‌های صلب استفاده کرد. نوع دیگری از روسازی‌ها، روسازی‌های مرکب می‌باشند. روسازی‌های مرکب بایستی براساس تئوری صفحه تحلیل شوند. زیرا بخش‌ باربر اصلی در اینگونه روسازی‌ها، بتن است.

2ـ روسازی‌های انعطاف‌پذیر به روسازی‌های متعارف و روسازی‌های تمام آسفالتی و .... تقسیم می‌شوند. روساز‌ی‌های متعارف شامل یک سیستم چند لایه‌ای می‌باشند به گونه‌ای که مصالح مرغوب‌تر در قسمت‌های بالاتر به کار می‌روند. استفاده از روسازی‌های فوق در جاهایی که مصالح محلی در دسترس می‌باشد. مناسب است.

فصل دوم :

کاهش عمر روسازی‌های انعطاف‌پذیر


(کاهش عمر روسازی‌های انعطاف‌پذیر در اثر تغییرات شرایط چسبندگی بین لایه‌ها با توجه به کرنش قائم روی خاک‌بستر)

از جمله دلایل کاهش عمر بهره‌برداری روسازی‌ها، طراحی بدون در نظر گرفتن واقعیت‌ها اجرایی آنهاست. مقدار بار منتقل شده بین لایه‌ها به عوامل گوناگونی مانند میزان چسبندگی بین لایه‌ها و اصطکاک داخلی بین لایه‌‌ای آنها وابسته است. چنانچه این لایه‌ها با استفاده از چسبنده‌های مناسب بین لایه‌ای و تراکم کافی محدود شوند،‌آنها یکپارچه عمل می‌کنند. در این مبحث میزان خرابی روسازی‌های گوناگون با توجه به احتمال وجود این اصطکاک تحت بارگذاری‌های مختلف، ارزیابی می‌گردد. معیار خرابی روسازی‌های انعطا‌ف‌پذیر، میزان کرنش قائم روی خاک بستر در نظر گرفته شده و با روش‌های تحلیلی این کرنش‌ها محاسبه و عمر روسازی‌ها در تحمل این کرنش‌ها مقایسه شده‌اند. با توجه به این مطالعات، میزان کاهش عمر روسازی‌هایی که دارای لایه‌های محدود و بدون اصطکاک داخلی هستند، نسب به روسازی‌های با اصطکاک داخلی تعیین گردیده است.

کلید واژه‌ها: اصطکاک داخلی، اندودهای تک کت و پریکمت، کاهش عمر روسازی، کرنش قائم روی خاک‌بستر.


-1مقدمه

لایه‌های روساز‌های انعطاف‌پذیر معمولاً به دلیل ملاحظات اقتصادی از جنس‌های متفاوت در ضخامت‌های گوناگون ساخته می‌شود. نحوه تماس دو لایه متفاوت در روسازی‌های چند لایه‌ای «شرایط بین لایه‌ای» آنها را مشخص می‌کند. شراط بین لایه‌ای در میزان عکس‌العمل‌های تحت بارگذاری، تأثیرگذار است. خرابی‌هایی که در روسازی‌ها به شکل زودرس مشاهده می‌شوند، بیشتر به علت طراحی سازه‌ای بدون در نظر گرفتن آنچه در اجراء اتفاق می‌افتد، است. هم اکنون در روش «طرح ضخامت مکانستیک» که براساس میزان عکس‌العمل‌های سازه‌ای جسم راه فرآیند طراحی صورت می‌گیرد، دانستن شرایط بین لایه‌ای نقش مهم‌تری پیدا کرده است. استفاده از «تک کت»‌ و «پریمکت» بین دو لایه‌ی آسفالتی و یا یک لایه‌ی آسفالتی و یک لایه‌ی مصالح سنگی چسبندگی بین لایه‌ای را به وجود می‌آورد. میزان اصطکاک بین لایه‌ای علاوه بر وجود اندودهای فوق به تراکم، جنس و کیفیت مصالح لایه‌ها بستگی دارد، هر چه تراکم لایه‌های فوقانی بیشتر باشد، میزان در هم فرورفتگی اجزاء بین لایه‌ای بیشتر خواهد بود و میزان اصطکاک داخلی کاهش می‌یابد. میزان مقاومت مصالح سنگی بین لایه‌ها در برابر سایش باعث افزایش مقاومت اصطکاک لایه‌ای می‌شود.

2- تأثیر بارهای افقی و اصطکاک بین لایه‌ای بر عمر روسازی‌ها

عدم وجود شرایط بین لایه‌ای نامحدود در بارگذاری‌های افقی، باعث وقوع تغییر شکل‌های موجی در شیب‌ها، گردشگاه‌ها و نقاط شروع به حرکت وسایل نقلیه سنگین می‌گردد. بررسی شرایط بین لایه‌ای و بارهای افقی با کمک نرم‌افزارهای المان‌های محدود (ABAQUS) انجام شده است که در این مطالعات، مدل هندسی روسازی با المان‌ها مختلف و شرایط بین لایه‌ای نیز با تعریف انواع گره‌ها به وجود آمده‌اند. در تحقیقات دیگری اندازه‌گیری اصطکاک بین لایه‌ای با تجربیات آزمایشگاهی ـ مکانیکی از جمله آزمایش برش گیوتینی (Shear Test Guilotine Type) و آزمایش برش مستقیم (Direct Test) همراه بوده است. مجموعه این مطالعات نشان می‌دهد که بارهای افقی شدیداً کرنش‌های کششی بالا و پایین رویه فوقانی و بالای لایه آستر را افزایش می‌دهد و باعث خرابی زودرس روسازی می‌گردد. اثرات جمع شونده شرایط بین لایه‌ای نامناسب و نیروهای افقی روی سطح روسازی بسیار بزرگ است، به طوری که باعث کاهش عمر روسازی تا 300 برابر برای روسازی نیمه صلب و تا 15 برابر برای روسازی‌های انعطاف‌پذیر می‌شود.

جدول (1) مقایسه‌ای بین حالات مختلف شرایط بین لایه‌ای با توجه به دو ملاک اندازه‌گیری کیفیت روسازی، شامل عمر خستگی و عمر سرویس‌دهی انجام داده است. سیستم مدیریت روسازی با توجه به اینکه خرابی روسازی به تدریج اتفاق می‌افتد، بایست قادر به دانستن شرایط اجرای صحیح و کنترل شرایط اجرایی در پخش، لایه‌ریزی و تراکم روسازی‌ها به عنوان عوامل مؤثر در شرایط بین لایه‌ای در تخمین عمر روسازی و مدیریت آن باشد. در مطالعات حاضر نقش بارگذاری قائم، که به روسازی‌های موجود کشور در شرایط بین لایه‌ای مختلف وارد می‌گردد، مورد نظر می‌باشد.