رپو فایل

مرجع دانلود و خرید فایل

رپو فایل

مرجع دانلود و خرید فایل

مقاله بررسی انتقال داده‌های اطلاعاتی در باند M 433 بین دو میکروکنترلر

مقاله بررسی انتقال داده‌های اطلاعاتی در باند M 433 بین دو میکروکنترلر در 58 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
بازدید ها 6
فرمت فایل doc
حجم فایل 55 کیلو بایت
تعداد صفحات فایل 58
مقاله بررسی انتقال داده‌های اطلاعاتی در باند M 433 بین دو میکروکنترلر

فروشنده فایل

کد کاربری 2102
کاربر

مقاله بررسی انتقال داده‌های اطلاعاتی در باند M 433 بین دو میکروکنترلر در 58 صفحه ورد قابل ویرایش

مقدمه:

از آنجایی که ساخت و ارائه پروژه یکی از مهمترین ارکان تحصیل یک دانشجو در رشته الکترونیک میباشد لذا انتخاب و ارائه پروژه ای متناسب با رشته تحصیلی بسیار شایان اهمیت است.

پروژه ای که در اینجا به بررسی آن می‎پردازیم به ما این امکان را می‎دهد که اطلاعات را در باند 433M بین دو میکروکنترلر انتقال دهیم این کار بصورت بی سیم و بدون استفاده از پورت سریال صورت گرفته ما در این پروژه ابتدا از ماژولهای RF استفاه کردیم اما به دلیل ساخت نامناسب آنها و فرکانس بالایی که ما در آن کار می کردیم شاهد نویزهایی بودیم که نتیجه دلخواه را به ما نمی داد بنابراین برای اخذ نتیجه بهتر تصمیم بر استفاده ازکیتهای PT گرفتیم. PT ها به ما این امکان را می دادند که با کد کردن اطلاعات در برد فرستنده آنها را بدون هیچ پارازیتی درگیرنده ببینیم البته برنامه نویسی مربوط به PT ها نقش مهمی را در این امر ایفا می‎کند که ما در پیوست برنامه فرستنده و گیرنده را خواهیم دید.

بدین ترتیب هر عددی که ما در برد و فرستنده بوسیله کیبرد انتخاب می کنیم پس از نمایش روی LCD بوسیله pt22 کد می‎شود و به برد گیرنده فرستاده می‎شود pt22 وظیفه Dcode کردن دیتا را به عهده دارد و پس از بازگشایی کد میکرو آن را روی LCD نمایش می‎دهد.

فهرست مطالب

مقدمه

فصل 1: اصول و نحوه عملکرد میکروکنترلرها

فصل 2: اصول و نحوه عملکرد فرستنده ها و گیرنده های رادیویی

فصل 3: مدار فرستنده و گیرنده

-1) آشنایی با میکروکنترلرها

گر چه کامپیوترها تنها چند دهه ای است که با ما همراهند، با این حال تأثیر عمیق آنها بر زندگی ما با تأثیر تلفن، اتومبیل و تلویزیون رقابت می کنند … تصور ما از کامپیوتر معمولاً «داده پردازی» است که محاسبات عددی را بطور خستگی ناپذیر انجام می‎دهد.

ما کامپیوترها را به عنوان جزء مرکزی بسیاری از فرآورده های صنعتی و مصرفی از جمله درسوپرمارکت ها،‌ داخل صندوق های پول و ترازو، در اجاق ها و ماشین های لباسشویی،‌ ساعتهای دارای سیستم خبر دهنده و ترموستات ها، VCR ها و … در تجهیزات صنعتی مانند مته های فشاری و دستگاه های حروفچینی نوری می یابیم. در این مجموعه ها کامپیوترها وظیفه «کنترل» را در ارتباط با «دنیای واقعی»، برای روشن و خاموش کردن وسایل و نظارت بر وضعیت آنها انجام می دهند. میکروکنترلرها (برخلاف ریزکامپیوترها و ریز پرازنده ها) اغلب در چنین کاربردهایی یافت می‎شوند.

با این که بیش از بیست سال از تولد ریزپردازنده ها نمی گذرد، تصور وسایل الکترونیکی و اسباب بازیهای امرزوی بدون آن کار مشکلی است. در 1971 شرکت اینتل، 8080 را به عنوان اولین ریزپردازنده موفق عرضه کرد.

مدت کوتاهی پس از آن شرکت موتورولا، RCA و سپس تکنولوژی MOS و شرکت زایلوگ انواع مشابهی را به ترتیب به نامهای 6800 و 1801 و 6502 و Z80 عرضه کردند. گر چه این IC ها (مدارهای مجتمع) به خودی خود فایده ای زیادی نداشتند اما به عنوان بخشی از یک کامپیوتر تک بورد یا SBC ، به جزء مرکزی فرآورده های مفیدی برای آموزش طراحی با ریزپردازنده ها تبدیل شدند. از این SBC ها که به سرعت به آزمایشگاه های طراحی در کالج ها و شرکهای الکترونیک راه پیدا کردند می‎توان برای نمونه از D2 ساخت موتورولا، KIM-1 ساخت Mos Technology و SCK-85 متعلق به شرکت اینتل نام برد.

«ریزکنترلگر» قطعه ای شبیه به ریز پردازندها ست در 1976 اینتل 8748 را به عنوان اولین قطعه ی خانواده ی ریزکنترلرگرهای MCS-48TM معرفی کرد. 8748 با 17000 ترانزیستور در یک مدار مجتمع شامل یک CPU ، 1 کیلوبایت EPROM ، 64 بایت RAM ،‌27 پایه ورودی - خروجی (I/O) ویک تایمر 8 بیتی بود.

این IC و دیگر اعضای MCS-48TM که پس از آن آمدند، خیلی زود به یک استاندارد صنعتی در کاربردهای کنترل گرا تبدیل شدند. جایگزین کردن اجزاء الکترومکانیکی در فرآورده هایی مثل ماشینهای لباسشویی و چراغ های راهنمایی از ابتدای کار یک کاربرد مورد توجه برای این میکروکنترلرها بودند و همین طور باقی ماندند. دیگر فرآورده هایی که در آنها می‎توان میکروکنترلر را یافت عبارتند از اتومبیلها، تجهیزات صنعتی، وسایل سردرگمی و ابزارهای جانبی کامپیوتر (افرادی که یک PC از IBM دارند کافی است به داخل صفحه کلید نگاه کنند تا مثالی ازیک میکروکنترلر را در یک طراحی با کمترین اجزاء ممکن ببینند).

توان ، ابعاد و پیچیدگی میکروکنترلرها با اعلام ساخت 8051 یعنی اولین عضو خانواده میکروکنترلر MCS-51TM در 1980 توسط اینتل پیشرفت چمشگیری کرد. در مقایسه با 8084 این قطعه شامل بیش از 60000 ترانزیستور، 4K بایت ROM ،‌128 بایت RAM ، 32 خط I/O، یک درگاه سریال و دو تایمر 16 بیتی است که از لحاظ مدارات داخلی برای یک IC ، بسیار قابل ملاحظه است.

امروزه انواع گوناگونی از این IC وجو ددارند که به طور مجازی این مشخصات را دو برابر کرده اند. شرکت زیمنس که دومین تولید کننده قطعات MCS-51TM است ، SAB 80515 را بعنوان یک 8051 توسعه یافته در یک بسته ی 68 پایه با 6 درگاه (پورت) I/O بیتی، 13 منبع وقفه و یک مبدل آنالوگ به دیجیتال با 8 کانال ورودی عرضه کرده است. وخانواده ی 8051 به عنوان یکی از جامعترین و قدرتمندتر ین میکروکنترلرهای 8 بیتی شناخته شده و جایگاهش را به عنوان یک میکروکنترلر مهم برای سالهای آینده یافته است.

7-2) مزایا و کاربردهای مدولاسیون

هدف اصلی مدولاسیون در یک سیستم مخابراتی ایجاد سیگنال مدوله شده ای است که با مشخصات کانال مخابراتی همخوانی داشته باشد. در واقع مدولاسیون چند مزیت و کاربرد عملی دارد که در زیر به اختصار در مورد آنها صحبت خواهیم کرد.

مدولاسیون برای انتقال مؤثر انتقال سیگنال به فواصل دور همیشه با حرکت امواج الکترومغناطیسی همراه است چه محیط هدایت کننده ای باشد و چه نباشد بازده هر روش انتقالی به فرکانس سیگنال منتقل شده بستگی دارد با استفاده از خاصیت انتقال فرکانسی مدولاسیون CW می‎توان اطلاعات پیام را روی حاملی سوار کرد که فرکانسش برای روش انتقال برگزیده شده مناسب باشد.

به عنوان مثال در مخاربره رادیوی در خط دید باید انتنهایی به کاربرده شود که ابعادشان حداقل یک دهم طول موج سیگنال باشد. انتقال یک سیگنال صوتی مدوله نشده که مولفه های فرکانسی آن تا KHz هم می رسد، مستلزم به کارگیری آنتنهایی با ابعاد حدود km 300 است. انتقال سیگنال مدوله شده در MHz 100 به صورت FM این امکان را می‎دهد که مخابره با آنتنهای دارای اندازه های معقول بازده بهتری دارند. Tomasi مبحث فشرده ای راجع به انتشار امواج و آنتنها دارد.

مدولاسیون برای غلبه بر محدودیتهای سخت افزاری: طراحی سیستم مخابراتی ممکن است با قیودی راجع به هزینه و در دسترس بودن امکانات سخت افزاری همراه باشد، سخت افزارهایی که عملکردشان غالباً به فرکانس مورد استفاده بستگی دارد. مدولاسیون به طراحی این امکان را می‎دهد که سیگنال را در گستره ای قرار دهد که در آن محدودیت سخت افزاری وجود ندارد. یک نکته در این ارتباط مسئله پهنای باند کسری است که به صورت پهنای باند مطلق تقسیم بر فرکانس مرکزی تعریف می‎شود. هزینه ها و پیچیدگی های سخت افزاری در صورت پهنای باند مطلق تقیسم بر فرکانس مرکزی تعریف می‎شود. هزینه ها و پیچیدگی های سخت افزاری در صورت قرارداشتن پهنای باند کسری در محدوده 1 تا 10 درصد می نیمم می‎شود . ملاحظات پهنای باند کسری از آنجا ناشی می شوند که واحد مدولاسیون هم در گیرنده ها وجود دارد و هم در فرستنده ها

پس می‎توان نتیجه گرفت که سیگنالهای با پهنای باند زیاد باید روی حاملهای فرکانس بالا مدوله شوند. چون آهنگ اطلاعات طبق قانون هارتلی- شنون با پهنای باند متناسب است. نتیجه می گیریم که برای ارسال اطلاعات با آهنگ بالا به یک حامل فرکانس بالا نیاز داریم. برای مثال یک سیستم میکروویو GHz 5 می‎تواند در یک فاصله زمانی معین ، 10000 برابر یک کانال رادیویی kHz 500 انتقال می‎کند. اگر در طیف الکترومغناطیسی بالاتر برویم مثلا می توانیم به یک پرتو نور لیزری با امکان پهنای باندی معادل 10 میلیون کانال تلویزیونی دست یابیم.

مدولاسیون برای کاهش نویز و تداخل : یک روش سر راست برای مبارزه با نویز و تداخل افزایش توان سیگنال، برای غلبه بر آلودگیهای نویزی و تداخلی است. ولی افزایش توان هزینه دارد و ممکن است به وسائل آسیب برساند. (یکی از کابلهای بین قاره ای در اثر افزایش ولتاژی که برای دستیابی به سیگنال دریافتی قابل استفاده صورت گرفته بود از بین رفت). خوشبختانه FM و بعضی روشهای مدولاسیون دیگر ویژگیهای با ارزشی از لحاظ حذف نویز و تداخل دارند.

این خاصیت کاهش نویز پهن باند نام دارد زیرا پهنای باند لازم برای انتقال بسیار برزگتر از پهنای باند سیگنال مدوله کننده است. مدولاسیون پهن باند به طرح این امکان را می‎دهد که کاهش توان سیگنال را با افزایش پهنای باند جبران کند این بده بستان در قانون هارتلی - شنون نیز دیده می شود.

مدولاسیون برای اختصاص فرکانسی: وقتی رادیو را روشن می‎کنید و ایستگاه خاصی را می گیرید، دارید از میان سیگنالهای متعددی که دریافت می‎شوند یکی را بر می گزینید. چون هر ایستگاه فرکانس حامل اختصاصی خود را دارد ، سیگنال مطلوب را می‎توان با فیلتر کردن جدا کرد. اگر مدولاسیون نبود در هر ناحیه ای تنها یک ایستگاه می توانست برنامه پخش کند و پخش همزمان توسط ایستگاهی دیگر باعث تداخلی نومید کننده می شد.

جهت دریافت فایل مقاله بررسی انتقال داده‌های اطلاعاتی در باند M 433 بین دو میکروکنترلرلطفا آن را خریداری نمایید


طراحی و ساخت سیستم ضبط و پخش سیگنال با میکروکنترلر AVRو کارت حافظه ی MMC

در این پروژه سعی بر این است که علاوه بر آشنایی با میکروکنترلر AVRو محیط نرم افزاری (labview) سخت افزار،به گونه ای طراحی شود که با دریافت سیگنال آنالوگ ورودی (صوت) از میکروفن ، از طریق واحدADC میکرو این سیگنال به دیجیتال تبدیل شود و با توجه به برنامه‎ای که در داخل میکرو تعبیه شده است،این اطلاعات به داخل MMC ریخته شده ومیکرو با دریافت فرمان از کامپ
دسته بندی کامپیوتر و IT
بازدید ها 1
فرمت فایل doc
حجم فایل 1052 کیلو بایت
تعداد صفحات فایل 65
طراحی و ساخت سیستم ضبط و پخش سیگنال با میکروکنترلر  AVRو کارت حافظه ی MMC

فروشنده فایل

کد کاربری 2106
کاربر

طراحی و ساخت سیستم ضبط و پخش سیگنال با میکروکنترلر AVRو کارت حافظه ی MMC

مقدمه:

در این پروژه سعی بر این است که علاوه بر آشنایی با میکروکنترلر AVRو محیط نرم افزاری (labview) سخت افزار،به گونه ای طراحی شود که با دریافت سیگنال آنالوگ ورودی (صوت) از میکروفن ، از طریق واحدADC میکرو این سیگنال به دیجیتال تبدیل شود و با توجه به برنامه‎ای که در داخل میکرو تعبیه شده است،این اطلاعات به داخل MMC ریخته شده ومیکرو با دریافت فرمان از کامپیوتر به صورت ارتباط سریال دستور پخش را دریافت می‎کند و از طریق واحد تایمر/ کانترکه در مد PWM کار می‎کند,اطلاعات ذخیره شده در MMC را با آشکار سازی موج PWM توسط یک انتگرال گیر،باز سازی و به آنالوگ تبدیل می‎کند و این سیگنال آنالوگ بوسیله یک سری مدارات مورد نیاز برای پخش از طریق یک هدفن پخش می‎گردد.

فصل اول :

نگاهی اجمالی به میکروکنترلرها

بخش اول : میکروکنترلرها

سیر تکاملی میکروکنترلرها :

اولین میکروکنترلرها در اواسط دهه 1970 ساخته شدند. این میکروکنترلرها در ابتدا پردازنده‎های ماشین حساب بودند که دارای حافظه برنامه کوچکی از نوع ROM ، حافظ داده از نوعRAM وتعدادی درگاه ورودی وخروجی بودند.

با توسعه فناوری سیلیکون ، میکرو کنترلرهای 8 بیتی قویتری ساخته شدند . در این میکروکنترلرها علاوه بر بهینه شدن دستورالعمل ها، تایمر /شمارنده روی تراشه، امکانات وقفه و کنترل بهینه شده خطوط ورودی وخروجی نیز به آن اضافه شده است. حافظه موجود بر روی تراشه هنوز هم محدود می‎باشد و دربسیاری موارد کافی نیست .یکی از پیشرفتهای قابل توجه در آن زمان، قابلیت استفاده از حافظه EPROM قابل پاک شدن با اشعه ماورا بنفش، روی تراشه بود این قابلیت، زمان طراحی و پیاده سازی محصول را بطور محسوسی کاهش داد و نیز برای اولین بار امکان استفاده از میکروکنترلرها را در کاربردهایی که حجم تولید پایینی دارند، فراهم ساخت.

خانواده 8051 در اوایل دهه 1980 توسط شرکت اینتل معرفی گردید . از آن زمان تاکنون 8051 یکی از محبوبترین میکروکنترلرها بوده و بسیاری از شرکتها دیگر نیز به تولید آن اقدام کرده‎اند . در حال حاضر مدل‎های مختلفی از 8051 وجود دارد که در بسیاری از آنها امکاناتی نظیر مبدل آنالوگ به دیجیتال حجم نسبتاً بزرگ از حافظه برنامه و حافظه داده،مدولاتور عرض پالس(PWM) در خروجی‎ها که امکان پاک کردن و برنامه ریزی مجدد آن توسط سیگنال‎های الکتریکی وجود دارد،تعبیه شده است.

میکروکنترلرها اکنون به سمت 16 بیتی شدن در حرکت هستند . میکروکنترلر های 16 بیتی، پردازنده‎هایی با کارایی بالا (نظیر پردازش سیگنالهای دیجیتال ) می‎باشند که در کنترل فرایندهای بلادرنگ و در مواردی که حجم زیادی از عملیات محاسباتی مورد نیاز است، به کار برده می‎شوند.

بسیاری از میکروکنترلرهای 16 بیتی، امکاناتی نظیر حجم زیاد حافظه برنامه و حافظه داده، مبدل های آنالوگ به دیجیتال چند کانالی، تعداد زیادی درگاهI/O ، چندین درگاه سریال، عملکردهای بسیار سریع ریاضی و منطقی و مجموعه دستورالعمل‎های بسیار قدرتمند با قابلیت پردازش سیگنال را دارا می‎باشند .

معماری داخلی میکرو کنترلرها:

ساده ترین معماری میکروکنترلر، متشکل از یک ریز پردازنده، حافظه و درگاه ورودی/خروجی است. ریز پردازنده نیز متشکل از واحد پردازش مرکزی (CPU)و واحد کنترل(CU) است.

CPUدر واقع مغز یک ریز پردازنده است و محلی است که در آنجا تمام عملیات ریاضی و منطقی ،انجام می‎شود. واحد کنترل ، عملیات داخلی ریزپردازنده را کنترل می‎کند و سیگنال‎های کنترلی را به سایر بخش‎های ریز پردازنده ارسال می‎کند تا دستورالعمل‎های مورد نظر انجام شوند.

حافظه بخش بسیار مهمی از یک سیستم میکروکامپیوتری است.ما می‎توانیم بر اساس بکارگیری حافظه ،آن را به دو گروه دسته‎بندی می‎کنیم: حافظه برنامه و حافظه داده . حافظه برنامه ، تمام کد برنامه را ذخیره می‎کند .این حافظه معمولا از نوع فقط خواندنی (ROM) می باشد. انواع دیگری از حافظه‎ها نظیرEPROM وحافظه‎های فلش EEPROM برای کاربردهایی که حجم تولید پایینی دارند وهمچنین هنگام پیاده‎سازی برنامه به کار می‎روند . حافظه داده از نوع حافظه خواندن/نوشتن(RAM) می‎باشد. در کاربردهای پیچیده که به حجم بالایی از حافظه ‎‎RAM نیاز داریم ، امکان اضافه کردن تراشه های حافظه بیرونی به اغلب میکروکنترلر ها وجود دارد.

در گاههای ورودی / خروجی (I/O) به سیگنال‎های دیجیتال بیرونی امکان می‎دهند که با میکروکنترلر ارتباط پیدا کند .درگاههای (I/O) معمولاً به صورت گروههای 8 بیتی دسته بندی می‎شوند و به هر گروه نیز نام خاصی اطلاق می­­شود به عنوان مثال ، میکروکنترلر 8051 دارای 4 درگاه ورودی / خروجی 8 بیت می‎باشد که P3,P2,P1,P0 نامیده می‎شوند. در تعدادی از میکروکنترلرها ، جهت خطوط درگاه I/O قابل برنامه ریزی می‎باشد . لذا بیتهای مختلف یک درگاه را می توان به صورت ورودی یا خروجی برنامه‎ریزی نمود. در برخی دیگر از میکروکنترلرها (از جمله میکروکنترلرهای 8051) درگاههای I/O به صورت دو طرفه می‎باشند . هر خط از درگاه I/O این گونه میکرو کنترلرها را می توان به صورت ورودی و یا خروجی مورد استفاده قرار داد . معمولاً ، این گونه خطوط خروجی ، به همراه مقاومتهای بالا کش بیرونی به کار برده می‎شوند.

خانواده AVR :

میکروکنترولر AVR به منظور اجرای دستورالعملهای قدرتمند در یک سیکل کلاک (ساعت) به اندازه کافی سریع است و می‎تواند برای شما آزادی عملی را که احتیاج دارید به منظور بهینه سازی توان مصرفی فراهم کند . میکروکنترلر AVR بر مبنای معماری(RISC کاهش مجموعه‎ی دستورالعملهای کامپیوتر ) پایه‎ گذاری شده و مجموعه ای از دستورالعملها را که با 32 ثبات کار می‎کنند ترکیب می‎کند . به کارگرفتن حافظه از نوع Flash که AVR ها به طور یکسان از آن بهره می‎برند از جمله مزایای آنها است.یک میکرو AVR می‎تواند با استفاده از یک منبع تغذیه 2.7 تا 5.5 ولتی از طریق شش پین ساده در عرض چند ثانیه برنامه ریزی شود یا Program شود.

میکروهای AVR در هرجا که باشند با 1.8 ولت تا 5.5 ولت تغذیه می‎شوند البته انواع توان پایین نیز وجود دارند که بهLow Power معروفند. ویژگیهایی که سبب شد، AVRها جای 8051 را بگیرند،عبارتست از:

  1. توان مصرفی پایین: توان مصرفی پایین آنها برای استفاده بهینه از باتری و همچنین کاربرد میکرو در وسایل سیار و سفری طراحی شده که میکروهای جدید AVR با توان مصرفی کم از شش روش اضافی در مقدار توان مصرفی ، برای انجام عملیات بهره می‎برند. این میکروها تا مقدار 1.8 ولت قابل تغذیه هستند که این امر باعث طولانی تر شدن عمر باتری می‎شود. در میکروهای با توان پایین ، عملیات شبیه حالت Standby است یعنی میکرو می‎تواند تمام اعمال داخلی و جنبی را متوقف کند و کریستال خارجی را به همان وضعیت شش کلاک در هر چرخه رها کند !
  2. 2. حافظه ی فلش خود برنامه ریز با امکانات خاص
  3. 3. قابلیت دوباره برنامه ریزی کردن بدون احتیاج به اجزای خارجی
  4. 4. بایت کوچک که به صورت فلش سکتور بندی شده اند
  5. 5. داشتن مقدار متغیر در سایز بلوک بوت
  6. 6. خواندن به هنگام نوشتن
  7. 7. بسیار آسان برای استفاده
  8. 8. کاهش یافتن زمان برنامه ریزی
  9. 9. کنترل کردن برنامه ریزی به صورت سخت افزاری

10. استفاده از فیوزها و بیتهای قفل

11. ایزوله بودن نسبت به نویز که باعث کابرد آن در محیط صنعتی می شود.

راههای مختلف عمل برنامه ریزی :

ü موازی یاparallel یکی از سریعترین روشهای برنامه ریزی.

ü خود برنامه ریزی توسط هر اتصال فیزیکی.

ü برنامه ریزی توسط هر نوع واسطی از قبیل TWIو SPI و غیره، دارا بودن امنیت صد درصد در بروزرسانی و کد کردن.

ü : SPI واسطه سه سیمی محلی برای بروزرسانی سریع ، آسان و موثر در استفاده.

ü واسط JTAG : واسطه ای که تسلیم قانون IEEE 1149.1 است و می‎تواند به صورت NVM برنامه‎ریزی کند یعنی هنگام قطع جریان برق داده‎ها از بین نروند .

AVR همچنین مجهز به امکانات دیگر مانند تایمر واچ داگ و مبدل‎های ADC و PWM است.

یکی از مهمترین بخشهای AVR که کمتر در هر میکروکنترلرهای دیگر دیده می‎شود مقایسه کننده آنالوگ با گین 1 و 200 و ... می باشد. لازم به ذکر است که در 8051 باید از فلش(EEPROM) وADC و کریستال مولد ساعت به صورت بیرونی استفاده می‎کردیم اما در AVR این امکانات به صورت درونی وجود دارد .

انواع میکروهایAVR :

شرکتATMEL که شرکت اصلی تولید کننده میکروهایAVR می‎باشد, سه نوع میکروکنترلر AVR تولید می‎کند :

(1سری Tiny (2 سری AT90s (3 سریATmega

که هر سری از این میکروها ویژگیهای خاصی داشته و در مصارف خاصی کاربرد بیشتری دارند که در ذیل به توضیح مختصری پیرامون هر یک از این سری‎ها پرداخته می‎شود :

سریTiny:

میکروهای این سری برای : 1- کاهش قیمت 2- صرفه جویی در وقت بهینه شده‎اند ، میزان مصرف ، حجم حافظه و تعداد پایه ها در میکروهای این سری کم است.

از جمله میکروهای این سری می‎توان موارد زیر را نام برد :

• AT tiny 10

• AT tiny 11

• AT tiny 12

• AT tiny 15 L

• AT tiny 26

• AT tiny 26 L

• AT tiny 28 L

سری 90s:

از نظر حجم حافظه و تعداد پین ورودی / خروجی و توان مصرفی متوسط می‎باشد و به آن AVR معمولی هم می­گویند.چند نمونه معروف از این میکروها در زیر نام برده شده است :

• AT 90s 1200

• AT 90s 2313

• AT 90s2323/LS2323/S2343/LS2343

• AT 90s 2333/LS2333/S4433/LS4433

• AT 90s 8515

• AT 90s 8535/LS8535

جهت دریافت فایل طراحی و ساخت سیستم ضبط و پخش سیگنال با میکروکنترلر AVRو کارت حافظه ی MMC لطفا آن را خریداری نمایید