رپو فایل

مرجع دانلود و خرید فایل

رپو فایل

مرجع دانلود و خرید فایل

مقایسه الگوریتم های خطایابی در شبکه های حسگر بی سیم

مقایسه الگوریتم های خطایابی در شبکه های حسگر بی سیم

مقایسه-الگوریتم-های-خطایابی-در-شبکه-های-حسگر-بی-سیمدر این پروژه با توجه به محدودیتها و شرایط عملیاتی ویژه شبکه های حسگر، روشی را برای بهبود تحمل پذیری خطا مانند تشخیص و تصحیح خطا در این نوع شبکه¬ها مورد بررسی قرار می¬دهیم. روش پیشنهادی به صورت روشی جدید قابلیت تشخیص خطا و مصرف انرژی کمتر در شبکه¬های حسگر را بهبود می¬بخشد.


دانلود فایل


آموزش سئو و الگوریتم های گوگل

آموزش سئو و الگوریتم های گوگل

آموزش-سئو-و-الگوریتم-های-گوگلآموزش سئو و الگوریتم های گوگل + آموزش سئو بر اساس الگوریتم پاندا


دانلود فایل


بررسی پارامترهای طراحی ترانسفورماتورهای قدرت تکه فاز و ارائه الگوریتم مناسب برای طراحی بهینه آن با استفاده از نرم افزار MATLAB

ضریب شکل موج برابر با نسبت مقدار rms موج ولتاژ مورد استفاده به مقدار میانگین این شکل موج است، که بدین ترتیب برای هر شکل موج مشخصه موجود، این ضریب متفاوت خواهد بود برای مواردی که از موج متناوب سینوسی استفاده می شود، مقدار این ضریب برابر با 111 در نظر گرفته خواهد شد
دسته بندی برق ، الکترونیک و مخابرات
بازدید ها 3
فرمت فایل doc
حجم فایل 217 کیلو بایت
تعداد صفحات فایل 131
بررسی پارامترهای طراحی ترانسفورماتورهای قدرت تکه فاز و ارائه الگوریتم مناسب برای طراحی بهینه آن با استفاده از نرم افزار MATLAB

فروشنده فایل

کد کاربری 2106
کاربر

بررسی پارامترهای طراحی ترانسفورماتورهای قدرت تکه فاز و ارائه الگوریتم مناسب برای طراحی بهینه آن با استفاده از نرم افزار MATLAB

فهرست مطالب

عنوان

مقدمه

فصل اول: مفاهیم اساسی در طراحی

فصل دوم: هسته ترانسفورماتور

فصل سوم: سیم پیچی ترانسفورماتور

فصل چهارم: طراحی ترانسفورماتور

منابع و مراجع

مقدمه

در میان مباحث مختلف علوم بحث طراحی یکی از مهمترین موضوعاتی است که در مورد آن باید تحقیقات وسیعی انجام شود. در مورد دستگاهها و وسایل الکتریکی نیز موضوع طراحی جایگاه ویژه ای دارد.

شاید پرکاربردترین وسیله ای که در اغلب دستگاههای الکتریکی و الکترونیکی بصورت مستقیم یا غیرمستقیم و در اندازه های کوچک و بزرگ استفاده می شود، ترانسفورماتور می باشد.

ترانسفورماتورها از نظر کاربرد انواع مختلفی دارند: ترانسفورماتورهای ولتاژ (VT) ، ترانسفورماتورهای جریان (CT) ، ترانسفورماتورهای قدرت (PT) ، ترانسفورماتورهای امپدانس، ترانسفورماتورهای ایزولاسیون و اتوترانسفورمرها . هر کدام از این نوع ترانسفورماتورها کاربرد و تعریف خاص خود را دارند.

در روند طراحی ترانسها مسایل مختلفی مطرح می شود، و مراحل متعددی باید طی شود تا یک طراحی بصورت پایدار و مناسب ، قاب ساخت و استفاده بصورت عملی باشد.

در این پروژه، بعد از بررسی مقدماتی و تعریف بعضی از پارامترهای مهم در مبحث ترانس، از جمله میل مدور (CM) ، ضریب شکل موج (Form Factor) و نیز ضریب انباشتگی سطح مقطع (Stacking factor) به معرفی دو فرمول اساسی مورد استفاده در روند طراحی پیشنهادی در این پروژه می پردازیم و در فصول بعدی به معرفی ضرایب مورد استفاده در طراحی هسته و سیم پیچی و نیز معرفی و ارایه کاتالوگها و نمودارهای موردنیاز برای طراحی انواع هسته و سیم پیجی، که از مباحث اساسی در ترانسفورماتورها می‌باشد، پرداخته میشود.

در ادامه مبحث اصلی و در واقع نتیجه ای که از مباحث قبلی گرفته شده است، در جهت ارائه یک نتیجه کلی، روندی برای طراحی ترانسفورماتورهای قدرت بصورت یک الگوریتم و روش برای طراحی آورده شده است.

در انتها نیز یک برنامه کامپیوتری در جهت بهبود روند طراحی و سرعت بخشیدن به انجام فرایند حجیم محاسباتی مبحث طراحی و بهبود بعضی از پارامترهای مهم از جمله راندمان، ارائه شده است. در پایان این بخش نیز نتایج چند طراحی آورده شده است.

فصل اول

مفاهیم اساسی در طراحی

در این قسمت به عنوان توضیح بعضی از تعاریف و مقدمات و چند مبحث بصورت گذرا مطرح می شود، که با توجه به اهمیت آشنایی با این مفاهیم در بحث طراحی می تواند بسیار مفید باشد.

تعاریف و مفاهیم:

مدل مدور (Circular Mil) :

میل مدور یکی از واحدهای متداول بین کننده سطح مقطع هادیها می‌باشد. وقتی که قطر هادی برابر با یک میل (mil) باشد، سطح مقطع هادی طبق روابط زیر و با توجه به شکل یک میل مدور خواهد بود.

(mil) قطر هادی D =

(CM) سطح مقطع هادی A=

1 mil = 0.001 inch

1 inch = 2.54 cm

(1-1)

ضریب شکل موج (From Factor) :

ضریب شکل موج برابر با نسبت مقدار rms موج ولتاژ مورد استفاده به مقدار میانگین این شکل موج است، که بدین ترتیب برای هر شکل موج مشخصه موجود، این ضریب متفاوت خواهد بود. برای مواردی که از موج متناوب سینوسی استفاده می شود، مقدار این ضریب برابر با 11/1 در نظر گرفته خواهد شد.

(2-1)

در شکل موج سینوسی روابط 3-1 و 4-1 برقرار می باشند:

(3-1) و (4-1)

و از روابط قبل برای موج سینوسی بدست می آید:

(5-1)

ضریب انباشتگی در سطح مقطع (Stacking Factor) :

ضریب انباشتگی در سطح مقطع برای بیان این واقعیت مطرح می‌شود که، سطح مقطع محاسبه شده هسته همیشه از مقدار واقعی سطح مقطع آهن هسته بیشتر است. بنابراین برای استفاده از پارامتر سطح مقطع در فرمولها باید این ضریب را که مقدار آن اغلب عددی نزدیک یک بوده و تقریباً 0.9 و یا 0.95 می باشد، به مقدار سطح مقطع ضرب کرد.

در اغلب موارد و نیز در این پروژه فاکتور انباشتگی با حرف کوچک s نمایش داده می شود.

معرفی دو فرمول اساسی در طراحی‌ها:

در طراحی ترانسها دو فرمول اساسی کاربرد زیادی دارند که در زیر آورده شده اند. با استفاده از این دو فرمول می توان به نتایج ارزشمندی رسید و روند طراحی را بصورت مدون و مشخص ارائه نمود. در این روابط مقدار ضریب انباشتگی سطح مقطع (s) را تقریباً برابر با یک در نظر گرفته ایم.

فرمول ولتاژ:

در این فرمول مقدار موثر تولید شده در یک سیم پیچی توسط رابطه (6-1) بیان می شود:

(6-1)

F : ضریب شکل موج

f : فرکانس (Hz)

a : سطح مقطع هسته

N : تعداد دور سیم پیچی

B : چگالی شار مغناطیسی

: ولتاژ تولید شده در سیم پیچی (ولت)

با استفاده از این رابطه می توان یکی از مهمترین پارامترهای طراحی یعنی تعداد دور به ازای هر ولت را براحتی محاسبه کرد و با توجه به شکل موج ولتاژ مورد استفاده یک رابطه مشخص بین این پارامتر و پارامترهای دیگر بدست آورد:

(7-1)

اگر در رابطه (7-1) مقدار a بجای برحسب بیان شود و نیز مقدار F هم برای موج سینوسی شکل در فرمول جاگذاری شود، رابطه (8-1) بدست خواهد آمد:

(8-1)

فرمول ظرفیت توان:

این فرمول مقدار توانی را که در یک هسته مشخص با چگالی جریان مشخص و در یک فرکانس معین می تواند تولید شود بیان می‌شود:

(9-1)

J : چگالی جریان سیم

f : فرکانس (Hz)

W : مساحت پنجره هسته

a : سطح مقطع هسته

B : چگالی شار مغناطیسی

P : ظرفیت توان تولیدی (ولت آمپر)

با استفاده از این رابطه نیز می توان یکی دیگر از فاکتورهای مهم در طراحی را بدست آورد. این فاکتور که در واقع حاصلضرب دو پارامتر W و a می باشد، با نام حاصلضرب Wa ، شناخته می شود و در حالتی که مقدار a و W را با واحد ، و مقدار J را بر حسب بیان شده و رابطه (9-1) را مرتب کنیم، رابطه (10-1) بدست خواهد آمد که از مهمترین و پرمصرف ترین روابط در طراحی می‌باشد:

(10-1)

در روابط (9-1) و (10-1) ، اگر میزان چگالی جریان را با پارامتر دیگری که دارای واحد اندازه گیری معکوس چگالی جریان قبلی است، بیان کنیم و پارامتر جدید را با S نمایش دهیم، بعد از اعمال سایر ضرایب معادل سازی، روابط (11-1) و (12-1) بدست خواهد آمد که در آن واحد سنجش چگالی جریان جدید (S) برابر با میل مدور بر آمپر بیان می گردد:

(11-1)

(12-1)

تلفات و افت ولتاژ در ترانسفورماتورها:

فلز هسته مانند سیمهای مسی توسط یک شار مغناطیسی متغیر لینک می شود. در نتیجه این شار یک جریان گردشی در هسته القا می‌شود. این جریان که eddy current نامیده می شود به همراه اثری دیگر بنام هیسترزیس یک تلفات توان به شکل گرما در آهن هسته ایجاد می کنند، که اغلب آن را تلفات آهن می گویند.

همچنین جریان بی باری در سیم پیچی اولیه با مقاومت سیم مسی روبرو می شود که باعث ایجاد تلفات و نیز افت ولتاژ می شود. این تلفات مستقل از بار بوده و به همراه تلفات آهن بخش عمده تلفات بی باری را تشکیل می دهند.

علاوه بر موارد بالا جریان بار که از مقاومت سیمهای اولیه و ثانویه عبور می کنند، تلفات را بوجود می آورد که سیمهای مسی را گرم می کند و ایجاد افت ولتاژ می کند. این تلفات را تلفات بار می گویند. تلفات توان هسته آهنی و جریان های بار سیم پیچ اولیه هم فاز می‌باشد و بنابراین بطور مستقیم جمع پذیرند. این تلفات قسمت غالب تلفات توان را جواب می دهند و اغلب تنها فاکتوری می باشند که در طراحی ها به حساب آورده می شوند.

منابع دیگر تلفات از جمله تلفات ناشی از جریان مغناطیس کنندگی نیز وجود دارند. این جریان به راکتانس سیم پیچی اولیه مربوط می‌باشد و مستقل از بار است. بخاطر اینکه این جریان نسبتاً راکتیو است، تلفات ناشی از آن نیز با تلفات توان هسته و جریان های بار هم فاز نمی باشد و نمی تواند بطور مستقیم با آنها جمع شود و زمانیکه این مقادیر باید به حساب آورده شوند (که البته تقریباً به ندرت و در تعداد کمی از ترانسهای قدرت) باید بصورت برداری وارد محاسبات گردند. خازن پراکنده و اندوکتانس نشتی دو فاکتور مهمی هستند که در تلفات و سایر پدیده های نامطلوب اثر می گذارند.

خاصیت خازنی پراکنده به طور حتم در بین دور سیمها، بین یک سیم پیچی با سیم پیچی دیگر و نیز بین سیم پیچی ها و هسته وجود دارد. این خازنها در عملکرد ترانس ایجاد اختلال می کنند، ولی با توجه به اینکه این خازنها به غیر از فرکانس های نسبتاً بالا تأثیر قابل توجهی روی مقادیر ترانس ندارند در شرایط معمولی و کار با فرکانس های پایین از آنها چشم پوشی می کنیم.

اندوکتانس نشتی بخاطر اینکه مقداری از خطوط شار سیم پیچی را در درون هسته لینک نمی کنند و مسیر فلو را در خارج هسته کامل می‌کنند، بوجود می آید. این نشت در هر دو سیم پیچ اولیه و ثانویه وجود دارد، ولی اگر هر دو سیم پیچ اولیه و ثانویه در روی یک ستون و بصورت روی هم پیچیده شوند مقدار آن بشدت کاهش خواهد یافت. اثر این اندوکتانس در فرکانسهای پایین بسیار کم خواهد بود.

در طراحی ترانسهای قدرت از اکثر فاکتورهای تلفات پراکنده بجز در موارد خاص که یک مقدار راکتانس کوچک را در نظر می گیریم، چشم‌پوشی می شود. به عنوان مثال فاصله های هوایی در هسته هایی که بصورت نامناسب ساخته شده اند، یا حرکت هسته به درون ناحیه اشباع اندوکتانس سیم پیچ اولیه و بنابراین راکتاس را کاهش می دهد. این امر باعث می شود که جریان مغناطیس کنندگی بالا رفته و به دنبال آن افت ولتاژها و تلفات مس در درون سیم پیچ اولیه زیاد شود.

در شکل (2-1) یک مدار معادل دقیق از ترانسفورماتور آورده شده است که در آن همه پارامترها منظور شده اند. شکل (3-1) برای حالت فرکانسهای پایین تنظیم شده است و فقط پارامترهای موثر در نظر گرفته شده اند.

با در نظر گرفتن شکل (3-1) بعنوان شکل مورد استفاده در این پروژه مطالعات زیر را انجام می دهیم.

از روابط جریان ها داریم:

(13-1)

(15-1) و (14-1)

(17-1) و (16-1)

برای ایجاد رابطه بین نسبت ولتاژها و تعداد دورها داریم:

(18-1)

(19-1)

از رابطه (19-1) می توان نتیجه بسیار مهم دیگری را بدست آورد. کاربرد این رابطه در بدست آوردن نسبت تعداد دورها در حالت جبران سازی افت ولتاژها برای حالتی که یکی از تعداد دورها و نیز افت ولتاژ سیم پیچی ها مشخص باشند، است.

اگر تعداد دور اولیه مشخص باشد، برای اینکه بدانیم با چه تعداد دوری در طرف ثانویه علاوه بر ایجاد نسبت ولتاژ مناسب، افت ولتاژها را جبران نماییم، از رابطه (20-1) استفاده می کنیم:

(20-1)

در حالتی که تعداد دور سیم پیچی در ثانویه مشخص باشد، تعداد دور اولیه با شرایط بالا بدست خواهد آمد:

(21-1)

تخمین تلفات ترانسفورماتور برای راندمان ماکزیمم:

یکی از آسانترین و مفیدترین اعداد و ارقامی که به عنوان فرض از آن استفاده فراوانی خواهد شد، راندمان می باشد. راندمان را با نشان می دهیم. از نظر قاعده ترانسفورماتورها ادوات کم تلفاتی هستند و اغلب راندمانی بین 75/0 و 95/0 دارند. بنابراین هر عددی در این فاصله می تواند مقدار مناسبی برای یک حدس اولیه باشد.

با استفاده از این عدد اولیه براحتی می توان مقدار توان مورد نیاز ورودی برحسب وات را محاسبه کرد:

(22-1)

بصورت منطقی از مقدار توان ورودی می توان جریان اولیه را برحسب آمپر محاسبه کرد:

(23-1)

برای ایجاد حالت بهینه در راندمان و نیز اقتصادی تر کردن طراحی باید دو موضوع مهم را در نظر بگیریم:

1- تلفات سیم پیچ اولیه و ثانویه با هم برابر باشند.

2- تلفات آهنی با تلفات مسی کل برابر باشند.

به بیان دیگر یعنی نصف کل تلفات در آهن هسته و نصف دیگر در مس باشند و تلفات مسی بصورت برابر بین سیم پیچی اولیه و ثانویه تقسیم شود.

در این حالت به تجربه فرمول دیگری را می توان بدست آورد که نسبت تعداد دور اولیه و ثانویه را از طریق راندمان به نسبت ولتاژها مربوط می‌سازد:

(24-1)

برای ایجاد راندمان حداکثر از روش فوق باید فضای قابل دسترس برای سیم پیچی ها در هسته بصورت مساوی بین اولیه و ثانویه تقسیم شود، یعنی سیم پیچی اولیه نصف فضای کل در دسترس برای سیم پیچی ها در هسته را اشغال کند و مجموعه سیم پیچی های ثانویه نیز همگی با هم نصف دیگر فضای در دسترس را اشغال نمایند. منظور از فضای سیم پیچی حجم قسمتی است که توسط سیم در هر سیم پیچی اشغال شده است. شکل های (4-1) و (5-1) این مطلب را توضیح می دهند.

در مواردی ممکن است برای طراحی مقدار رگولاسیون ولتاژ داده شده باشد و از طریق آن باید مقدار راندمان را برای شروع روند طراحی حدس زد. در مورد ارتباط بین رگولاسیون ولتاژ و راندمان می توان رابطه زیر را با تقریب مناسبی بیان کرد:

(25-1) و

از رابطه بالا رابطه (26-1) بدست خواهد آمد:

(26-1) و

فصل دوم

هسته در ترانفسورماتورها

در این فصل در مورد انواع هسته و نیز مواد مورد استفاده در هسته ترانسفورماتورهای امروزی مطالبی آورده شده است که با توجه به اهمیت انتخاب هسته در روند طراحی می تواند یکی از قسمتهای مهم این پروژه و نیز پروژه‌های مشابه باشد.

تا کنون ماده هسته به طور مکرر با عنوان آهن بیان می شد. در واقع بیشتر مواقع آهنی وجود ندارد ولی آهن هم می تواند مورد استفاده قرار گیرد.

معمولاً ماده هسته آلیاژهایی در یک کلاس کاملاً کم آهن می باشد که شامل 85% نیکل به علاوه مقدار کمی آهن و سایر مواد می باشد. ماده دیگری نیز وجود دارد که اصلاً فلز نمی باشد و در واقع یک نوع سرامیک می باشد.

معمولترین نوع هسته فولاد ترکیب شده با آهن با مقدار کمی از سایر مواد می باشد که سایر مواد به صورت قابل ملاحظه سیلیکون می باشد.

مشخصه‌های مواد هسته:

به طور معمول پنج مشخصه هسته باید در نظر گرفته شود:

1- Permeability :

پرمابیلیته توانایی هدایت فلو است و از نظر ریاضی برابر است با نسبت چگالی فلو (B) به نیروی مغناطیس کنندگی ایجاد کننده آن.

(1-2)

وقتی که B برحسب H رسم گردد منحنی بدست آمده مغناطیس شوندگی یا منحنی اشباع یا به صورت ساده منحنی B-H نامیده می شود (شکل 1-2).

این منحنی B-H برای یک ماده نمونه است که قبلاً کاملاً مغناطیس زدایی شده است و سپس به تدریج در معرض افزایش تدریجی نیروی مغناطیسی کنندگی قرار گرفته و در هر لحظه چگالی فلو اندازه گیری شده است. شیب منحنی در هر نقطه داده شده پرمابیلیته در آن نقطه می باشد. زمانی که محاسبه شود و برحسب B یا H رسم شود مشهود است که ثابت نیست. مقدار تغییر می کند و بنابراین مقدار آن در یک نقطه B یا H داده شده مشخص می شود (شکل 2-2).

در مقادیر کوچک H پرمابیلیته اولیه نامیده می شود. درجات معمولی مواد هسته از قبیل فولاد کم کربن و فولاد سیلیکون دار دارای اولیه کمی می‌باشد آلیاژهی زیادی از جمله انواع آهن نیکل دار در چندین دهه اخیر تلاش شده است برای اینکه اولیه آنها حتی به صورت نامحدود افزایش یابد.

یک اصطلاح دیگر که به صورت متناوب در طراحی ترانسفورماتور مواجه می شویم افزایشی است که بعضی وقتها ظاهری یا ac گفته می‌شود این زمانی است که یک نیروی مغناطیس کنندگی ac روی یک نیروی مغناطیس کنندگی dc گذاشته شود که یک وضعیت مشابه در بعضی انواع مدارهای الکترونیکی می باشد.

اثر این مقدار dc بردن آهن به نزدیک نقطه اشباع است و سپس برای ac این کاهش می یابد در چنین وضعیتی پرمابیلیته بهبود می یابد با در نظر گرفتن یک فاصله هوایی با اندازه بهینه در مدار مغناطیسی شکل 3-2 ، اثر تغییرات فاصله هوایی هسته را روی اندوکتانس سیم پیچی با هسته آهنی را نمایش می‌دهد. سه سطح dc جریان برای یک سطح ثابت نشان داده شده است.

2- Saturation :

منحنی B-H به وضوح معنای اشباع را مشخص می کند. دیده می شود که بعد از یک مقدار مشخص H (نقطه c در شکل 1-2) افزایش کمی در مقدار B وجود دارد و آهن به شرایط اشباع می رسد. مواد مختلف در مقدارهای متفاوتی از چگالی فلو به اشباع می رسد باید توجه کنیم که در حالت اشباع پرمابیلیته باید خیلی کوچک یا صفر باشد، برای اینکه افزایش کمی در مقدار B و یا عدم افزایش آن به خاطر افزایش H وجود دارد. این به آن معنی است که هنگامی که آهن اشباع می شود اندوکتانس خیلی کوچک است.

به صورت معمول دقت می شود که آهن بالای نقطه اشباع نرود هر چند استثناهای مهمی وجود دارد که بعداً به آنها پرداخته می شود.


تحلیل الگوریتم شاخه و قید موازی آسنکرون

در این مقاله توضیحی درباره کامپیوترهای موازی می‌دهیم و بعد الگوریتمهای موازی را بررسی می‌کنیم ویژگیهای الگوریتم branch bound را بیان می‌کنیم و الگوریتمهای bb موازی را ارائه می‌دهیم و دسته‌ای از الگوریتمهای bb آسنکرون برای اجرا روی سیستم MIMD را توسعه می‌دهیم سپس این الگوریتم را که توسط عناصر پردازشی ناهمگن اجرا شده است بررسی می‌کنیم نمادهای pe
دسته بندی کامپیوتر و IT
بازدید ها 0
فرمت فایل doc
حجم فایل 32 کیلو بایت
تعداد صفحات فایل 29
تحلیل الگوریتم شاخه و قید موازی آسنکرون

فروشنده فایل

کد کاربری 2106
کاربر

تحلیل الگوریتم شاخه و قید موازی آسنکرون

تحلیل الگوریتم شاخه و قید موازی آسنکرون

Asynchronous Parallel Branch and Bound Algorithm

1- خلاصه:

در این مقاله توضیحی درباره کامپیوترهای موازی می‌دهیم و بعد الگوریتمهای موازی را بررسی می‌کنیم. ویژگیهای الگوریتم branch & bound را بیان می‌کنیم و الگوریتمهای b&b موازی را ارائه می‌دهیم و دسته‌ای از الگوریتمهای b&b آسنکرون برای اجرا روی سیستم MIMD را توسعه می‌دهیم. سپس این الگوریتم را که توسط عناصر پردازشی ناهمگن اجرا شده است بررسی می‌کنیم.

نمادهای perfect parallel و achieved effiency را که بطور تجربی معیار مناسبی برای موازی‌سازی است معرفی می‌کنیم زیرا نمادهای قبلی speed up (تسریع) و efficiency (کارایی) توانایی کامل را برای اجرای واقعی الگوریتم موازی آسنکرون نداشتند. و نیز شرایی را فراهم کردیم که از آنومالیهایی که به جهت موازی‌سازی و آسنکرون بودن و یا عدم قطعیت باعث کاهش کارایی الگوریتم شده بود، جلوگیری کند.

2- معرفی:

همیشه نیاز به کامپیوترهای قدرتمند وجود داشته است. در مدل سنتی محاسبات، یک عنصر پردازشی منحصر تمام taskها را بصورت خطی (Seqventia) انجام میدهد. به جهت اجرای یک دستورالعمل داده بایستی از محل یک کامپیوتر به محل دیگری منتقل می‌شد، لذا نیاز هب کامپیوترهای قدرتمند اهمیت روز افزون پیدا کرد. یک مدل جدید از محاسبات توسعه داده شد، که در این مدل جدید چندین عنصر پردازشی در اجرای یک task واحد با هم همکاری می‌کنند. ایده اصل این مدل بر اساس تقسیم یک task به subtask‌های مستقل از یکدیگر است که می‌توانند هر کدام بصورت parallel (موازی) اجرا شوند. این نوع از کامپیوتر را کامپیوتر موازی گویند.

تا زمانیکه این امکان وجود داشته باشد که یک task را به زیر taskهایی تقسیم کنیم که اندازه بزرگترین زیر task همچنان به گونه‌ای باشد که باز هم بتوان آنرا کاهش داد و البته تا زمانیکه عناصر پردازشی کافی برای اجرای این sub task ها بطور موازی وجود داشته باشد، قدرت محاسبه یک کامپیوتر موازی نامحدود است. اما در عمل این دو شرط بطور کامل برقرار نمی‌شوند:

اولاً: این امکان وجود ندارد که هر taskی را بطور دلخواه به تعدادی زیر task‌های مستقل تقسیم کنیم. چون همواره تعدادی زیر task های وابسته وجود دارد که بایستی بطور خطی اجرا شوند. از اینرو زمان مورد نیاز برای اجرای یک task بطور موازی یک حد پایین دارد.

دوماً: هر کامپیوتر موازی که عملاً ساخته می‌شود شامل تعداد معینی عناصر پردازشی (Processing element) است. به محض آنکه تعداد taskها فراتر از تعداد عناصر پردازشی برود، بعضی از sub task ها بایستی بصورت خطی اجرا شوند و بعنوان یک فاکتور ثابت در تسریع کامپیوتر موازی تصور می‌شود.

الگوریتمهای B&B مسائل بهینه سازی گسسته را به روش تقسیم فضای حالت حل می‌کنند. در تمام این مقاله فرض بر این است که تمام مسائل بهینه سازی مسائل می‌نیمم کردن هستند و منظور از حل یک مسئله پیدا کردن یک حل ممکن با مقدار می‌نیمم است. اگر چندین حل وجود داشته باشد، مهم نیست کدامیک از آنها پیدا شده.

الگوریتم B&B یک مسئله را به زیر مسئله‌های کوچکتر بوسیله تقسیم فضای حالت به زیر فضاهای (Subspace) کوچکتر، تجزیه می‌کند. هر زیر مسئله تولید شده یا حل است و یا ثابت می‌شود که به حل بهینه برای مسئله اصلی (Original) نمی‌انجامد و حذف می‌شود. اگر برای یک زیر مسئله هیچ کدام از این دو امکان بلافاصله استنباط نشود، آن زیر مسئله به زیرمسئله‌های کوچکتر دوباره تجزیه می‌شود. این پروسه آنقدر ادامه پیدا می‌کند تا تمام زیر مسئله‌های تولید شده یا حل شوند یا حذف شوند.

در الگوریتمهای B&B کار انجام شده در حین اجرا به شدت تحت تاثیر نمونه مسئله خاص قرار می‌گیرد. بدون انجام دادن اجرای واقعی الگوریتم این امکان وجود ندارد که تخمین درستی از کار انجام شده بدست آورد. علاوه برآن، روشی که کار باید سازمان‌دهی شود بر روی کار انجام شده تاثیر می‌گذارد. هر گامی که در اجرای الگوریتم b&b ی موازی بطور موفقیت‌آمیزی انجام می‌شود و البته به دانشی است که تاکنون بدست آورده. لذا استفاده از استراتژی جستجوی متفاوت یا انشعاب دادن چندین زیر مسئله بطور موازی باعث بدست آمدن دانشی متفاوت می‌شود پس می‌توان با ترتیب متفاوتی زیر مسئله‌ها را انشعاب داد.

دقت کنید که در یک بدل محاسبه خطی افزایش قدرت محاسبه فقط بر روی تسریع الگوریتم اثر می‌کند وگرنه کار انجام شده همچنان یکسان است.

با این حال اگر قدرت محاسبه یک کامپیوتر موازی با اضافه کردن عناصر پردازشی اضافه افزایش پیدا کند. اجرای الگوریتم b&b بطور آشکاری تغییر می‌کند (به عبارت دیگر ترتیبی که در آن زیر برنامه‌ها انشعاب پیدا می‌کنند تغییر می‌کند). بنابراین حل مسائل بهینه‌سازی گسسته سرسع بوسیله یک کامپیوتر موازی نه تنها باعث افزایش قدرت محاسبه کامپیوتر موازی شده است بلکه باعث گسترش الگوریتمهای موازی نیز گشته است.

جهت دریافت فایل تحلیل الگوریتم شاخه و قید موازی آسنکرون لطفا آن را خریداری نمایید


کاربردهای الگوریتم ژنتیک

به طور کلی انتخاب و طراحی بهینه در بسیاری از مسائل علمی و فنی باعث تولید بهترین محصول یا جواب ممکن در یک شرایط خاص می شود برای مثال تولید محصولات مناسب در حوزه های مختلف فنی و مهندسی وابسته به طراحی دقیق و بهینه ی شکل، اندازه و قطعات محصول است در نتیجه هر مسئله ی مهندسی ممکن است داری چندین جواب مختلف باشد که بعضی از آنها ممکن و بعضی غیر ممکن است
دسته بندی کامپیوتر و IT
بازدید ها 2
فرمت فایل doc
حجم فایل 2322 کیلو بایت
تعداد صفحات فایل 79
کاربردهای الگوریتم ژنتیک

فروشنده فایل

کد کاربری 2106
کاربر

کاربردهای الگوریتم ژنتیک

1-1- مقدمه

به طور کلی انتخاب و طراحی بهینه در بسیاری از مسائل علمی و فنی باعث تولید بهترین محصول یا جواب ممکن در یک شرایط خاص می شود. برای مثال تولید محصولات مناسب در حوزه های مختلف فنی و مهندسی وابسته به طراحی دقیق و بهینه ی شکل، اندازه و قطعات محصول است. در نتیجه هر مسئله ی مهندسی ممکن است داری چندین جواب مختلف باشد که بعضی از آنها ممکن و بعضی غیر ممکن است . وظیفه ی طراحان پیدا کردن بهترین جواب ممکن از میان جواب های مختلف است. مجموعه ی جواب های ممکن فضای طراحی را شکل می دهند که باید در این فضا به جستجوی بهترین یا بهینه ترین جواب پرداخت.

از آنجایی که نتیجه ی کار با توجه به نوع انتخاب این متدها و روش ها حاصل می شود لذا به اهمیت موضوع انتخاب بهینه ( Optimum ) و بهینه سازی در همه ی مسائل پی می بریم پس:

(( هدف ما این است که در فضای جواب های ممکن به دنبال بهترین جواب بگردیم. ))

روش های جدید بهینه سازی که امروزه در حل بسیاری از مسائل مختلف مورد استفاده قرار می گیرد عبارتند از:

1. Simulated Annealing

2. Ant colony

3. Random Cost

4. Evolution strategy

5. Genetic Algorithm

6. Celluar Automata

در این پایان نامه به بررسی و استفاده از روش Genetic Algorithm می پردازیم.

فصل دوم

مقدمه ای بر الگوریتم ژنتیک

2-1- مقدمه

الگوریتم های ژنتیک یکی از الگوریتم های جستجوی تصادفی است که ایده ی آن برگرفته از طبیعت می باشد . الگوریتم های ژنتیک در حل مسائل بهینه سازی کاربرد فراوانی دارند . به عنوان مثال می توان به مسئله فروشنده دوره گرد اشاره کرد . در طبیعت از ترکیب کروموزوم های بهتر ، نسل های بهتری پدید می آیند . در این بین گاهی اوقات جهش هایی نیز در کروموزوم ها روی می دهد که ممکن است باعث بهتر شدن نسل بعدی شوند. الگوریتم ژنتیک نیز با استفاده از این ایده اقدام به حل مسائل می کند .

در الگوریتم های ژنتیک ابتدا به طور تصادفی یا الگوریتمیک ، چندین جواب برای مسئله تولید می کنیم . این مجموعه جواب را جمعیت اولیه می نامیم . هر جواب را یک کروموزوم می نامیم . سپس با استفاده از عملگرهای الگوریتم ژنتیک پس از انتخاب کروموزوم های بهتر ، کروموزوم ها را باهم ترکیب کرده و جهشی در آنها ایجاد می کنیم . در نهایت نیز جمعیت فعلی را با جمعیت جدیدی که از ترکیب و جهش در کروموزوم ها حاصل می شود ، ترکیب می کنیم . موارد فوق را با جزئیات بیشتری مورد بررسی قرار می دهیم

جهت دریافت فایل کاربردهای الگوریتم ژنتیک لطفا آن را خریداری نمایید